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11. (a). Let E1 =

[
1 0
0 0

]
, E2 =

[
0 1
0 1

]
, E3 =

[
0 0
1 0

]
, E4 =

[
0 0
0 1

]
.

(⇒).
A commutes with every 2 × 2 matrix, it commutes with the four matrices, of
course.

(⇐).

Let B =

[
b11 b12

b21 b22

]
be any 2× 2 matrix.

AB = A
(
b11

[
1 0
0 0

]
+ b21

[
0 0
1 0

]
+ b12

[
0 1
0 0

]
+ b22

[
0 0
0 1

])
= b11A

[
1 0
0 0

]
+ b21A

[
0 0
1 0

]
+ b12A

[
0 1
0 0

]
+ b22A

[
0 0
0 1

]
= b11

[
1 0
0 0

]
A + b21

[
0 0
1 0

]
A + b12

[
0 1
0 0

]
A + b22

[
0 0
0 1

]
A

=
(
b11

[
1 0
0 0

]
+ b21

[
0 0
1 0

]
+ b12

[
0 1
0 0

]
+ b22

[
0 0
0 1

])
A

= BA

(b). AE1 = E1A

⇔
[

a11 a12

a21 a22

] [
1 0
0 0

]
=

[
1 0
0 0

] [
a11 a12

a21 a22

]
⇔

[
a11 0
a21 0

]
=

[
a11 a12

0 0

]
⇔ a12 = a21 = 0.

AE2 = E2A

⇔
[

a11 a12

a21 a22

] [
0 0
1 0

]
=

[
0 0
1 0

] [
a11 a12

a21 a22

]
⇔

[
a12 0
a22 0

]
=

[
0 0

a11 a12

]
⇔ a12 = 0, a22 = a11.

AE3 = E3A

⇔
[

a11 a12

a21 a22

] [
0 1
0 0

]
=

[
0 1
0 0

] [
a11 a12

a21 a22

]
⇔

[
0 a11

0 a21

]
=

[
a21 a22

0 0

]
⇔ a11 = a22, a21 = 0.



AE4 = E4A

⇔
[

a11 a12

a21 a22

] [
0 0
0 1

]
=

[
0 0
0 1

] [
a11 a12

a21 a22

]
⇔

[
0 a12

0 a22

]
=

[
0 0

a21 a22

]
⇔ a12 = a21 = 0.

So A commutes with every 2× 2 matrix
⇔ a11 = a22, a12 = a21 = 0.

⇔ A =

[
a11 0

0 a22

]
.

14. (a). A =

[
1 −1
0 2

]
, B =

[
1 0
1 2

]
,

A + B =

[
1 −1
0 2

]
+

[
1 0
1 2

]
=

[
2 −1
1 4

]
,

(A + B)2 =

[
2 −1
1 4

]2

=

[
3 −6
6 15

]
,

A2 =

[
1 −1
0 2

] [
1 −1
0 2

]
=

[
1 −3
0 4

]
,

AB =

[
1 −1
0 2

] [
1 0
1 2

]
=

[
0 −2
2 4

]
,

B2 =

[
1 0
1 2

] [
1 0
1 2

]
=

[
1 0
3 4

]
,

A2 + 2AB + B2 =

[
1 −3
0 4

]
+ 2

[
0 −2
2 4

]
+

[
1 0
3 4

]
=

[
2 −7
7 16

]
,

⇒ A2 + 2AB + B2 6= (A + B)2.

A−B =

[
1 −1
0 2

]
−

[
1 0
1 2

]
=

[
0 −1
−1 0

]
.

(A + B)(A−B) =

[
2 −1
1 4

] [
0 −1
−1 0

]
=

[
1 −2
−4 −1

]
,

A2 −B2 =

[
1 −3
0 4

]
−

[
1 0
3 4

]
=

[
0 −3
−3 0

]
,

⇒ (A + B)(A−B) 6= A2 −B2.

(b). (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2, (A + B)(A − B) = A2 −
AB + BA−B2.

(c). If AB = BA, identities in (b) can be simplified as identities in (a).

15. (a). Since (A − B)2 = A2 − AB − BA + B2 and (A + B)2 = A2 + AB + BA + B2,
if (A + B)2 = (A − B)2 then AB = −BA. Thus, A2B = (AA)B = A(AB) =
A(−BA) = (−AB)A = (BA)A = BA2.

(b). Let A =

[
−1 0

0 1

]
, then A2 = I but A 6= I and A 6= I.
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9. The augmented matrix of the system x + y + 2z = 2, 2x− y + 3z = 2, 5x− y + az = 6
is  1 1 2 2

2 −1 3 2
5 −1 a 6

 .

By Gauss-Jordan method, we have 1 1 2 2
0 −3 −1 −2
0 −6 (a− 10) −4

 ,

 1 1 2 2
0 1 1/3 2/3
0 −6 (a− 10) −4

 ,

 1 0 5/3 4/3
0 1 1/3 2/3
0 0 (a− 8) 0

 .

If a 6= 8, then z must be 0, and x = 4/3, y = 2/3.
If a = 8, then (x, y, z) = (4

3
− 5

3
z, 2

3
− 1

3
z, z) = (4

3
, 2

3
, 0) + z(−5

3
,−1

3
, 1).

11. We multiply the two matrixs

[
a b
c d

]
and

[
d −b
−c a

]
,

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc −ab + ab
cd− cd −bc + ad

]
=

[
ad− bc 0

0 ad− bc

]
= (ad−bc)

[
1 0
0 1

]
.

Thus

[
a b
c d

] [
d −b
−c a

]
= (ad− bc)I.

For

[
a b
c d

]
, If a 6= 0, then we can apply Gauss-Jordan process as follows:

[
a b 1 0
c d 0 1

]
⇒

[
1 b

a
1
a

0
c d 0 1

]
⇒

[
1 b

a
1
a

0
0 ad−bc

a
− c

a
1

]
.

Thus

[
a b
c d

]
is nonsingular if and only if ad−bc 6= 0 and then applying Gauss-Jordan

process again, we have[
1 b

a
1
a

0
0 1 − c

ad−bc
a

ad−bc

]
⇒

[
1 0 d

ad−bc
−b

ad−bc

0 1 − c
ad−bc

a
ad−bc

]

which says that its inverse is 1
(ad−bc)

[
d −b
−c a

]
.

If a = 0, we have

[
a b 1 0
c d 0 1

]
⇒

[
c d 0 1
0 b 1 0

]
by interchanging two equations.

To be able to apply Gauss-Jordan process further, i.e.,

[
a b
c d

]
is nonsingular if and
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only if c 6= 0, b 6= 0(i.e. ad− bc 6= 0), and then[
1 d

c
0 1

c

0 1 1
b

0

]
⇒

[
1 0 − d

bc
1
c

0 1 1
b

0

]
=

[
1 0 d

ad−bc
− b

ad−bc

0 1 − c
ad−bc

a
ad−bc

]
since a = 0, which says that its inverse is

1

(ad− bc)

[
d −b
−c a

]
.

14.  1 −2 1 1 0 0
−2 5 −4 0 1 0

1 −4 6 0 0 1

⇒
 1 −2 1 1 0 0

0 1 −2 2 1 0
0 −2 5 −1 0 1

⇒
 1 0 −3 5 2 0

0 1 −2 2 1 0
0 0 1 3 2 1



⇒

 1 0 0 14 8 3
0 1 0 8 5 2
0 0 1 3 2 1


Thus the inverse is

 14 8 3
8 5 2
3 2 1

.

2. (a). We have proved that AB = −BA implies A2B = BA2 in 15(a), p.147. Thus
A2B3 = (A2B)B2 = (BA2)B2 = B(A2B)B = B(BA2)B = BB(A2B) = BBBA2 =
B3A2.

(b). Let A =

[
1 0
0 1

]
and B =

[
−1 0

0 −1

]
. A and B are nonsingular, but A+B = O

is singular.

(c). If A and B are nonsingular, then (B−1A−1)(AB) = B−1(A−1A)B = BB−1 = I,
i.e., AB is nonsingular.

(d) The statement is true. Since AB is nonsingular, if C is the inverse of AB, then
C(AB) = I = (AB)C. Thus (CA) is a leftinverse of B and then B is nonsin-
gular. Also (BC) is a rightinverse of A and then A is nonsingular by Theorem 4.20.

(e) The statement is not true.

Let A =

[
1 1
1 0

]
, B =

[
0 0
0 −1

]
, then A + B =

[
1 1
1 −1

]
. And the inverse of

A + B is 1
2

[
1 1
1 −1

]
. But A−B =

[
1 1
1 1

]
, it is singular.

(f) The statement is not true. Let A =

[
1 −1
1 −1

]
, then A2 = O. Thus if A2 = O, A

may not be O.

(g) We have (A + I)(−A + I) = −A2 + A− A + I = I since A2 = O. Thus (A + I)
has (−A + I) as its inverse. Hence (A + I) is nonsigular.

(h) We have (A− I)(−A2−A− I) = −A3−A2−A + A2 + A + I = I since A3 = O.
Thus (A− I) has (−A2 − A− I) as its inverse. Hence (A− I) is nonsigular.
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(i) (A+2I)2 = O ⇒ (A+2I)(A+2I) = O ⇒ A2 +4A+4I = O ⇒ A(A+4I) = −4I.
Thus A has −(A + 4I)/4 as its inverse. Hence A is nonsigular.

(j) We prove it by induction.

i. When k = 1, AB = BA as given.

ii. Assume ABk = BkA when n = k.

iii. For n = k + 1, we have ABk+1 = ABkB = BkAB = BkBA = Bk+1A. Thus
ABk = BkA for every integer k ≥ 1

4. Assume A =

[
a b
c d

]
. Then A2 =

[
a b
c d

] [
a b
c d

]
=

[
a2 + bc b(a + d)
c(a + d) bc + d2

]
. Be-

cause A2 = A, we have four equations:

(a) a2 + bc = a.

(b) b(a + d) = b.

(c) c(a + d) = c.

(d) bc + d2 = d.

(1) If (a + d) = 1, we have a2 + bc = a, b = b, c = c, and bc + (1 − a)2 = (1 − a) ⇒

bc + 1− 2a + a2 = 1− a ⇒ bc + a2 = a. In this case, A =

[
a b
c 1− a

]
, where b

and c are arbitrary and a is any solution of the quadratic equation a2−a+bc = 0.

(2) If (a + d) 6= 1, we have b = 0 and c = 0. Thus, a2 = a and d2 = d. In this case,

A =

[
0 0
0 0

]
or

[
1 0
0 1

]
. Be careful that

[
0 0
0 1

]
or

[
1 0
0 0

]
is illegal because

(a + d) 6= 1.

7. First we define the notation [A]ij = aij for matrix A. As for the definition of the
transpose, we have [At]ij = [A]ji and at

ij = aji.

(a) Because [(At)t]ij = [At]ji = [A]ij, we have (At)t = A.

(b) Because [(A + B)t]ij = [(A + B)]ji = aji + bji = [A]ji + [B]ji = [At]ij + [Bt]ij =
[At + Bt]ij, we have (A + B)t = At + Bt.

(c) Because [(cA)t]ij = [cA]ji = caji = c(aji) = c[A]ji = c[At]ij = [cAt]ij, we have
(cA)t = cAt.

(d) Assume A is m × n and B is n × p. Define matrix C = AB. Then [(AB)t]ij =
[Ct]ij = [C]ji = cji =

∑n
x=1 ajxbxi =

∑n
x=1 bxiajx =

∑n
x=1 bt

ixa
t
xj = [BtAt]ij. Thus

(AB)t = BtAt.

(e) If A is nonsigular, A−1 exists. Then (A−1)t(At) = (AA−1)t = I t = I by (d).Thus
we have (At)−1 = (A−1)t if A is nonsigular.

8. Define A =

[
cos θ − sin θ
sin θ cos θ

]
.
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(a)

AAt =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
= I

(b) If A is a real orthogonal n× n matrix, AAt = I. This means the dot product of
different rows equals zero and that of the same row equals 1. Hence its rows form
an orthonormal set.
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