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1. (c) Let {e1, e2, ..., en} be the standard basis of unit coordinate vectors in Rn. Since
the linear transformation T is the multiplication by a fixed scalar c, T (e1) = c ·e1,
T (e2) = c · e2, . . . , T (en) = c · en. Thus the matrix representation of this linear
transformation relative to standard basis is

c 0 0 · · · 0
0 c 0 · · · 0
0 0 c · · · 0
...

...
...

. . .
...

0 0 0 · · · c

 .

3. (a) T (3i − 4j ) = 3T (i)− 4T (j ) = (3i + 3j )− (8i − 4j ) = −5i + 7j .
T 2(3i − 4j ) = T (T (3i − 4j )) = T (−5i + 7j ) = −5(i + j ) + 7(2i − j ) = 9i − 12j .

(b) Since T (i) = i + j and T (j ) = 2i − j , the matrix representation of T relative to
the standard basis {i , j } of R2 is [

1 2
1 −1

]
.

And T 2(i) = T (T (i)) = T (i + j ) = i + j + 2i − j = 3i ,
T 2(j ) = T (T (j )) = T (2i − j ) = (2i + 2j )− (2i − j ) = 3j .
The matrix representation of T 2 relative to the standard basis {i , j } of R2 is[

3 0
0 3

]
.

(c) Since e1 = i − j and e2 = 3i + j , i = e1+e2

4
and j = e2−3e1

4
. Thus

T (e1) = T (i−j ) = (i+j )−(2i−j ) = −i+2j =
−(e1 + e2) + 2(e2 − 3e1)

4
=
−7e1 + e2

4
,

T (e2) = T (3i+j ) = 3(i+j )+(2i−j ) = 5i+2j =
5(e1 + e2) + 2(e2 − 3e1)

4
=
−e1 + 7e2

4
.

Hence the matrix representation of T relative to basis {e1, e2} of R2 is[
−7

4
−1

4
1
4

7
4

]
.



And

T 2(e1) = T (T (i − j )) = T (−i + 2j )

= −(i + j ) + 2(2i − j )

= 3i − 3j

=
3(e1 + e2)− 3(e2 − 3e1)

4

=
12

4
e1 = 3e1,

T 2(e2) = T (T (3i + j )) = T (5i + 2j )

= 5(i + j ) + 2(2i − j )

= 9i + 3j

=
9(e1 + e2) + 3(e2 − 3e1)

4

=
12

4
e2 = 3e2.

Thus the matrix representation of T 2 relative to the basis {e1, e2} of R2 is[
3 0
0 3

]
.

8. (a) Since T is a linear transform.
T (2i − 3j ) = 2T (i)− 3T (j ) = 2(1, 0, 1)− 3(−1, 0, 1) = (5, 0,−1).
Let T (v) = O, v = ai + bj in R2. Then a(1, 0, 1) + b(−1, 0, 1) = O.
⇒ a− b = 0 and a + b = 0. ⇒ a = 0, b = 0.
Thus v = O is the only solution. Then the nullity = 0, and the rank = 2.

(b) Since T (i) = (1, 0, 1)t and T (j ) = (−1, 0, 1)t, the matrix of T relative to the

standard bases of R2 and R3 is

 1 −1
0 0
1 1

.

(c) Note that the null space of T is trivial. Then we can select any basis of R2 as
B = {e1, e2}, says, e1 = i , e2 = j . Then we let w1 = T (e1) = T (i) = (1, 0, 1)t and
w2 = T (e2) = T (j ) = (−1, 0, 1)t. It is clear that {w1, w2} is a linearly independent
set. We then let w3 = (0, 1, 0)t. Then B′ = {w1, w2, w3} is a basis of R3 and the

matrix representation of T relative to B and B′ is [T ]B→B′ =

 1 0
0 1
0 0

.

16. D(sin x) = cos x,
D(cos x) = − sin x,
D(x sin x) = sin x + x cos x,
D(x cos x) = cos x− x sin x,
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D2(sin x) = D(cos x) = − sin x,
D2(cos x) = D(− sin x) = − cos x,
D2(x sin x) = D(sin x + x cos x) = cos x + cos x− x sin x = 2 cos x− x sin x,
D2(x cos x) = D(cos x− x sin x) = − sin x− sin x− x cos x = −2 sin x− x cos x.

The matrices of D and of D2 relative to the given basis are
0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

 and


−1 0 0 −2
0 −1 2 0
0 0 −1 0
0 0 0 −1

 .

18.

D(e2x sin 3x) = 2e2x sin 3x + 3e2x cos 3x,

D(e2x cos 3x) = 2e2x cos 3x− 3e2x sin 3x = −3e2x sin 3x + 2e2x cos 3x,

D2(e2x sin 3x) = D(2e2x sin 3x + 3e2x cos 3x)

= 2(2e2x sin 3x + 3e2x cos 3x) + 3(2e2x cos 3x− 3e2x sin 3x)

= (−5)e2x sin 3x + 12e2x cos 3x,

D2(e2x cos 3x) = D(2e2x cos 3x− 3e2x sin 3x)

= 2(2e2x cos 3x− 3e2x sin 3x)− 3(2e2x sin 3x + 3e2x cos 3x)

= (−12)e2x sin 3x− 5e2x cos 3x.

The matrices representations of D and of D2 relative to the given bases are(
2 −3
3 2

)
and

(
−5 −12
12 −5

)
.

19. Let B = {1, x, x2, x3}.

(a).

T (1) = 0,
T (x) = x,
T (x2) = 2x2,
T (x3) = 3x3,

⇒ the matrix representaions of T relative to B is


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .

(b).

DT (1) = D(0) = 0,
DT (x) = D(x) = 1,
DT (x2) = D(2x2) = 4x,
DT (x3) = D(3x3) = 9x2.

⇒ the matrix representations of T relative to B is


0 1 0 0
0 0 4 0
0 0 0 9
0 0 0 0

 .

(c).

TD(1) = T (0) = 0,
TD(x) = T (1) = 0,
TD(x2) = T (2x) = 2x,
TD(x3) = T (3x2) = 6x2.
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⇒ the matrix representaion of T relative to B is


0 0 0 0
0 0 2 0
0 0 0 6
0 0 0 0

 .

(d). By (b), (c), and the linearity of linear operators, we have
(TD −DT )(1) = 0,
(TD −DT )(x) = −1,
(TD −DT )(x2) = −2x,
(TD−DT )(x3) = −3x2. Thus the matrix represention of (TD−DT ) relative to

B is


0 −1 0 0
0 0 −2 0
0 0 0 −3
0 0 0 0

 .

(e).

T 2(1) = T (0) = 0,
T 2(x) = T (x) = x,
T 2(x2) = T (2x2) = 4x2,
T 2(x3) = T (3x3) = 9x3.

⇒ the matrix representation of T relative to B is


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

 .

(f). 
D2(1) = 0,
D2(x) = 0,
D2(x2) = 2,
D2(x3) = 6x.

and


T 2(1) = 0,
T 2(x) = x,
T 2(x2) = 4x2,
T 2(x3) = 9x3.

⇒


T 2D2(1) = T 2(0) = 0,
T 2D2(x) = T 2(0) = 0,
T 2D2(x2) = T 2(2) = 0,
T 2D2(x3) = T 2(6x) = 6x.

and


D2T 2(1) = D2(0) = 0,
D2T 2(x) = D2(x) = 0,
D2T 2(x2) = D2(4x2) = 8,
D2T 2(x3) = D2(9x3) = 54x,

⇒


(T 2D2 −D2T 2)(1) = 0,
(T 2D2 −D2T 2)(x) = 0,
(T 2D2 −D2T 2)(x2) = −8,
(T 2D2 −D2T 2)(x3) = 6x− 54x = −48x.

Thus the matrix representation of T 2D2−D2T 2 relative to B is


0 0 −8 0
0 0 0 −48
0 0 0 0
0 0 0 0

 .

2. Let A =

[
0 1
0 2

]
and B =

[
a b
c d

]
.

(a) Because AB = O, we have AB =

[
0 1
0 2

] [
a b
c d

]
=

[
c d
2c 2d

]
=

[
0 0
0 0

]
.

4



Hence c = d = 0 and a, b are two arbitrary numbers. So B =

[
a b
0 0

]
with a

and b arbitrary.

(b) Because BA = O, we have BA =

[
a b
c d

] [
0 1
0 2

]
=

[
0 a + 2b
0 c + 2d

]
=

[
0 0
0 0

]
.

Hence a = −2b and c = −2d for two arbitrary numbers c and d. So B =[
−2b b
−2d d

]
with b and d arbitrary.

4. (a) Given A =

 1 2 2
2 1 2
1 2 3

 and B =

 4 1 1
−4 2 −4
1 2 1

. We have AB =

 −2 9 3
6 8 4
−1 11 4


and BA =

 7 11 13
0 −6 −4
6 6 9

. Thus AB −BA =

 −9 −2 −10
6 14 8
−7 5 −5

.

7. Let A =

[
cos θ − sin θ
sin θ cos θ

]
, we claim that An =

[
cos nθ − sin nθ
sin nθ cos nθ

]
. We prove it by

induction:

(a) When n = 1, A =

[
cos θ − sin θ
sin θ cos θ

]
is given.

(b) Assume for n = k, Ak =

[
cos kθ − sin kθ
sin kθ cos kθ

]
.

(c) For n = k + 1, we have

Ak+1 = AkA

=

[
cos kθ − sin kθ
sin kθ cos kθ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos kθ cos θ − sin kθ sin θ − cos kθ sin θ − sin kθ cos θ
sin kθ cos θ + cos kθ sin θ − sin kθ sin θ + cos kθ cos θ

]
=

[
cos (k + 1)θ − sin (k + 1)θ
sin (k + 1)θ cos (k + 1)θ

]
.

Therefore, A2 =

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
and An =

[
cos nθ − sin nθ
sin nθ cos nθ

]
.

9. Let A =

[
1 0
−1 1

]
. We claim that An =

[
1 0
−n 1

]
. We prove it by induction.

(a) When n = 1, we have A =

[
1 0
−1 1

]
as given.

(b) Assume for n = k, Ak =

[
1 0
−k 1

]
.
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(c) For n = k + 1, we have

Ak+1 = AkA

=

[
1 0
−k 1

] [
1 0
−1 1

]
=

[
1 0

−(k + 1) 1

]
.

Thus, A2 =

[
1 0
−2 1

]
=

[
2− 1 0
−2 2− 1

]
= 2

[
1 0
−1 1

]
−

[
1 0
0 1

]
= 2A − I

and A100 =

[
1 0

−100 1

]
.
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