

EE203001 Linear Algebra
 Solutions for Homework #1 Spring Semester, 2003

Wen-Yao Chen, Chao-Chung Chang, Meng-Hua Chang, Chen-Wei Hsu.

2. Let $V = \{\text{all vector } (x, y, z) \text{ in } R^3 \text{ with } x = 0 \text{ or } y = 0\}$. Choose a $v_1 = (x_1, 0, z_1) \in V$ with $x_1 \neq 0$ and a $v_2 = (0, y_2, z_2) \in V$ with $y_2 \neq 0$. Since $v_1 + v_2 = (x_1, y_2, z_1 + z_2) \notin V$, Axiom 1 fails to hold and V is not a linear space.

6. Let V be the set of all vectors $v = (x, y, z)$ in \mathbb{R}^3 such that

$$\begin{pmatrix} x & y & z \end{pmatrix} \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = vH = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} = O.$$

Let $v = (x, y, z)$, $v_1 = (x_1, y_1, z_1)$, $v_2 = (x_2, y_2, z_2)$, and $v_3 = (x_3, y_3, z_3)$ be elements in V and a, b be real numbers.

(1) Axiom 1.

Since $(v_1 + v_2)H = v_1H + v_2H = O$, $v_1 + v_2$ is in V .

(2) Axiom 2.

Since $(av)H = a(vH) = aO = O$, av is in V .

(3) Axiom 3.

$v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_2 + x_1, y_2 + y_1, z_2 + z_1) = v_2 + v_1$.

(4) Axiom 4.

$$\begin{aligned} (v_1 + v_2) + v_3 &= ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3, (z_1 + z_2) + z_3) \\ &= (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3), z_1 + (z_2 + z_3)) \\ &= v_1 + (v_2 + v_3). \end{aligned}$$

(5) Axiom 5.

$v + O = (x, y, z) + (0, 0, 0) = (x, y, z) = v$.

(6) Axiom 6.

$v + (-1)v = (x - x, y - y, z - z) = O$.

(7) Axiom 7.

$a(bv) = a(bx, by, bz) = (a(bx), a(by), a(bz)) = ((ab)x, (ab)y, (ab)z) = (ab)(x, y, z) = (ab)v$.

(8) Axiom 8.

$$\begin{aligned} a(v_1 + v_2) &= a(x_1 + x_2, y_1 + y_2, z_1 + z_2) \\ &= (ax_1 + ax_2, ay_1 + ay_2, az_1 + az_2) \\ &= (ax_1, ay_1, az_1) + (ax_2, ay_2, az_2) \\ &= a(x_1, y_1, z_1) + a(x_2, y_2, z_2) \\ &= av_1 + av_2. \end{aligned}$$

(9) Axiom 9.

$$\begin{aligned}
 (a+b)v &= ((a+b)x, (a+b)y, (a+b)z) \\
 &= (ax+bx, ay+by, az+bz) \\
 &= (ax, ay, az) + (bx, by, bz) \\
 &= a(x, y, z) + b(x, y, z) \\
 &= av + bv.
 \end{aligned}$$

(10) Axiom 10.

$$1v = (1x, 1y, 1z) = (x, y, z) = v.$$

21. Let x, y and z be positive real numbers in $V = \mathbb{R}^+$. Let a, b be real numbers. Denote the addition by \oplus and the scalar multiplication by \odot .

(1) Axiom 1.

Since x, y are positive, $x \oplus y = xy$, is positive, too.

Then $x \oplus y$ is in V .

(2) Axiom 2.

Since x is positive and a is real, $a \odot x = x^a$ is positive.

Then $a \odot x$ is in V .

(3) Axiom 3.

$$x \oplus y = xy = yx = y \oplus x.$$

(4) Axiom 4.

$$(x \oplus y) \oplus z = xy \oplus z = (xy)z = x(yz) = x \oplus yz = x \oplus (y \oplus z).$$

(5) Axiom 5.

$$x \oplus 1 = 1x = x.$$

(6) Axiom 6.

$$x \oplus (-1) \odot x = x \oplus x^{-1} = xx^{-1} = 1.$$

(7) Axiom 7.

$$a \odot (b \odot x) = a \odot x^b = (x^b)^a = x^{ab} = (ab) \odot x.$$

(8) Axiom 8.

$$a \odot (x \oplus y) = a \odot (xy) = (xy)^a = x^a y^a = (a \odot x)(a \odot y) = (a \odot x) \oplus (a \odot y).$$

(9) Axiom 9.

$$(a+b) \odot x = x^{a+b} = x^a x^b = (a \odot x)(b \odot x) = (a \odot x) \oplus (b \odot x).$$

(10) Axiom 10.

$$1 \odot x = x^1 = x.$$

22. (a) Step 1:

Let 0 be a zero element in V as stated in Axiom 5.

$$0x + 0x = (0 + 0)x \text{ (by Axiom 9)} = 0x.$$

Add $(-1)(0x)$, which is a negative of the element $0x$, to both sides, we have

$$(0x + 0x) + (-1)(0x) = 0x + (-1)(0x)$$

On the right-hand side, we have

$$0x + (-1)(0x) = 0 \text{ (by Axiom 6).}$$

On the left-hand side, we have

$$\begin{aligned}
 (0x + 0x) + (-1)(0x) &= 0x + (0x + (-1)(0x)) \text{ (by Axiom 4)} \\
 &= 0x + 0 \text{ (by Axiom 6)} \\
 &= 0x \text{ (by Axiom 5).}
 \end{aligned}$$

We conclude that $0x = 0$.

Step 2 :

$$\begin{aligned}
 x &= x + 0x \text{ (by Axiom 5 and Step 1)} \\
 &= x + ((-1) + 1)x = x + ((-1)x + 1x) \text{ (by Axiom 9)} \\
 &= (x + (-1)x) + 1x \text{ (by Axiom 4)} \\
 &= 0 + 1x \text{ (by Axiom 6)} \\
 &= 1x + 0 \text{ (by Axiom 3)} \\
 &= 1x \text{ (by Axiom 5).}
 \end{aligned}$$

(b) Let S be the set of all ordered pairs (x_1, x_2) of real numbers. If we define the addition as $(x_1, x_2) + (y_1, y_2) = (x_1 + x_2, y_1 + y_2)$, and the multiplication by scalars as $a(x_1, x_2) = (ax_1, 0)$, then the first 9 Axioms, but with Axioms 6 replaced by Axiom 6', hold but the 10th Axiom does not hold.

23 Let $v = (x_1, x_2)$ be an element in S with $x_1, x_2 \in \mathbb{R}$

(a) (1) First we show $(0,0)$ is a zero element in S . Because for any v in S , $v + (0, 0) = (x_1, x_2) + (0, 0) = (x_1, x_2) = v$, thus $(0,0)$ is a zero element in S .
(2) Since $v + (-1)v = (x_1, x_2) + (-x_1, 0) = (0, x_2) \neq (0,0)$ in general, Axiom 6 fails to hold.
(3) Since $1v = 1(x_1, x_2) = (x_1, 0) \neq (x_1, x_2) = v$ in general, Axiom 10 fails to hold.

(b) (1) If there exists a zero element called O in S , $O = (o_1, o_2)$, then for any element v in S , $v + O = (x_1, x_2) + (o_1, o_2) = (x_1 + o_1, 0)$. But due to the property of a zero element, $v + O = v = (x_1, x_2)$. Thus, there could not exist any zero element and Axiom 5 fails to hold.
(2) Because there is no zero element in S , there would not exist any negative for an element in S . So Axiom 6 fails to hold.

(c) (1) Since $(x_1, x_2) + (y_1, y_2) = (x_1, x_2 + y_2)$, $(y_1, y_2) + (x_1, x_2) = (y_1, y_2 + x_2)$, we have $(x_1, x_2) + (y_1, y_2) \neq (y_1, y_2) + (x_1, x_2)$ in general. The commutative law (Axiom 3) for addition fails to hold.
(2) Since $(x_1, x_2) + (0, 0) = (x_1, x_2 + 0) = (x_1, x_2)$, $(0, 0)$ is a zero element of S . But $(x_1, x_2) + (-1)(x_1, x_2) = (x_1, x_2) + (-x_1, -x_2) = (x_1, x_2 - x_2) = (x_1, 0) \neq (0,0)$ in general, Axiom 6 fails to hold.
(3) Since $(a + b)(x_1, x_2) = ((a + b)x_1, (a + b)x_2)$, and $a(x_1, x_2) + b(x_1, x_2) = (ax_1, ax_2) + (bx_1, bx_2) = (ax_1, ax_2 + bx_2)$, we have $(a + b)(x_1, x_2) \neq a(x_1, x_2) + b(x_1, x_2)$ in general. Thus Axiom 9 fails to hold.

(d) (1) Let $u = (1, 0)$, $v = (-1, 0)$ and $w = (0, 0)$. We have $(u + v) + w = (|1 + (-1)|, |0 + 0|) + w = (0, 0) + (0, 0) = (0, 0)$, but $u + (v + w) = u + (|(-1) + 0|, |0 + 0|) = u + (1, 0) = (1, 0) + (1, 0) = (2, 0)$. Thus Axiom 4, the associative law for addition, fails to hold.

(2) Suppose there is an element $O = (o_1, o_2)$ such that $w + O = w, \forall w \in S$. Then with $w = (0, 0)$, we have $(0, 0) = (0, 0) + O = (|0 + o_1|, |0 + o_2|) = (|o_1|, |o_2|)$, Thus O must be $(0, 0)$. But with $w = (-10)$, we have $(-1, 0) = (-1, 0) + O = (|-1 + 0|, |0 + 0|) = (1, 0)$, a contradiction. We conclude that S has no zero element and Axiom 5 fails to hold and neither does Axiom 6.

(3) Let $a > 0$, $u = (1, 0)$, and $v = (-1, 0)$. Then $a(u+v) = a(|1+(-1)|, |0+0|) = a(0, 0) = (|a \cdot 0|, |a \cdot 0|) = (0, 0)$, and $au+av = (|a \cdot 1|, |a \cdot 0|) + (|a \cdot (-1)|, |a \cdot 0|) = (a, 0) + (a, 0) = (|a+a|, |0+0|) = (2a, 0)$. We have $a(u+v) \neq au+av$, and Axiom 8 fails to hold.

(4) Let $a = 1, b = -1$ and $u = (1, 0)$. Then $(a+b)u = 0u = (|0 \cdot 1|, |0 \cdot 0|) = (0, 0)$, but $au+bu = (|1 \cdot 1|, |1 \cdot 0|) + (|-1 \cdot 1|, |-1 \cdot 0|) = (1, 0) + (1, 0) = (|1+1|, |0, 0|) = (2, 0)$. Thus Axiom 9 fails to hold.

(5) Let $u = (-1, 0)$. Then $1u = (|1 \cdot (-1), |1 \cdot 0|) = (1, 0) \neq u$. Axiom 10 fails to hold.