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Abstract—At present, the development in the nascent field of
synthetic gene networks is still difficult. Most newly created gene
networks are nonfunctioning due to intrinsic parameter fluctua-
tions, uncertain interactions with unknown molecules and exter-
nal disturbances of intra and extracellular environments on the
host cell. How to design a completely new gene network, that is to
track some desired behaviors under these intrinsic and extrinsic
disturbances on the host cell, is the most important topic in syn-
thetic biology. In this study, the intrinsic parameter fluctuations,
uncertain interactions with unknown molecules and environmental
disturbances, are modeled into the nonlinear stochastic systems of
synthetic gene networks in vivo. Four design specifications are in-
troduced to guarantee the stochastic synthetic gene network, which
can achieve robust optimal tracking of a desired reference model
in spite of these intrinsic and extrinsic disturbances on the host
cell. However, the robust optimal reference-tracking design prob-
lem of nonlinear synthetic gene networks is still hard to solve. In
order to simplify the design procedure of the robust optimal non-
linear stochastic-tracking design for synthetic gene networks, the
Takagi–Sugeno (T–S) fuzzy method is introduced to solve the non-
linear stochastic minimum-error-tracking design problem. Hence,
the robust optimal reference-tracking design problem under four
design specifications can be solved by the linear matrix inequality
(LMI)-constrained optimization method using convex optimiza-
tion techniques. Further, a simple design procedure is developed
for synthetic gene networks to meet the four design specifications to
achieve robust optimal reference tracking. Finally, an eigenvalue-
shifted design method is also proposed as an expedient scheme to
improve the stochastic optimal-tracking design method of synthetic
gene oscillators.

Index Terms—Eigenvalue-shifted design method, linear matrix
inequality (LMI), stochastic optimal reference-tracking design,
synthetic gene network, Takagi–Sugeno (T–S) fuzzy model.

I. INTRODUCTION

THE MAIN goal of the nascent field of synthetic biology
is to engineer an artificial gene network and then insert it

into the host cell to perform new tasks. One useful analogy to
conceptualize both the goal and methods of synthetic biology
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is the computer engineering hierarchy. At the bottom of the
hierarchy of synthetic biology are DNA, RNA, proteins, and
metabolites (including lipids and carbohydrates, amino acids,
and nucleotides), which are analogous to the physical layer of
transistors, capacitors, and resistors in computer engineering [1].
The next layer, i.e., the device layer, comprises biochemical
reactions that regulate the flow of information and manipulate
physical processes, which is equivalent to engineered logic gates
that perform computations in a computer. At the module layer,
synthetic biologists use a diverse library of biological devices
to assemble complex pathways that function like the integrated
circuits (ICs).

However, building biological systems entails a unique set of
design problems and solutions. Biological devices and modules
are not independent objects, and they are not built in the absence
of a biological context. Biological devices and modules of syn-
thetic biology typically function within cellular environments.
When synthetic biologists engineer the devices or modules, they
do so using the resources and machinery of the host cell, but
in the process, they also modify the cells themselves. A major
concern in this process is our present inability to fully predict
the functions of even the simple devices in the engineered cells
and construct the systems that perform complex tasks with pre-
cision and reliability [1]. The lack of predictive power stems
from several resources of uncertainty, some of which signify
the incompleteness of the available information about inherent
cellular characteristics. The effects of gene expression noises,
uncertain initial conditions, mutations, cell death, undefined and
changing extracellular environments, and interactions with cel-
lular contexts currently hinder us from engineering biological
systems with the confidence that we can engineer computers to
do specific tasks.

Recently, Kuepfer et al. have developed an approach for syn-
thetic biology based on semidefinite programming to partition
the parameter spaces of polynomial differential equation mod-
els into the so-called feasible and infeasible regions [2]. In this
approach, the feasible region simply refers to the existence of
a steady state of the synthetic system. Batt et al. propose an
approach for the analysis of a class of uncertain piecewise-
multiaffine differential equation models of synthetic biological
systems to adapt to the experimental data [3]. These models
allow the development of efficient algorithms to solve robust-
ness analysis and parameter tuning problems. Even though the
robustness to tolerate the parameter variations of synthetic gene
networks has been analyzed in the earlier literature, the pa-
rameter fluctuations of synthetic gene networks are inherently
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stochastic in the nanoscale systems and should be modeled by
nonlinear stochastic dynamic systems. Further, the uncertain
interactions with unknown molecules and environmental distur-
bances of synthetic gene networks have not been considered in
their design procedure to describe the undefined and changing
extracellular environments as well as the interactions with the
cellular context. Recently, some gene circuit designs have been
proposed to embed gene circuits into an existing gene network
to improve its robust stability [4], [5]. However, the synthetic
gene network is a different topic. We need to design a com-
pletely new gene network and then insert it into a host cell to
perform new tasks in spite of parameter fluctuations, uncertain
interactions with unknown molecules in the cellular context,
and environmental disturbances on the host cell. More recently,
a robust synthetic gene network despite environmental distur-
bances is designed to achieve a desired steady state via dynamic
game theory from the worst-case disturbance point of view [6].
A robust synthetic gene network is also designed via H∞ stabi-
lization method to achieve a desired steady state [7]. The design
purpose of all the aforementioned robust stabilization methods
is to design synthetic gene networks with a desired steady state.
However, some synthetic gene networks with a desired behav-
ior like oscillation or a transient behavior cannot be designed by
these kinds of robust stabilization methods. Therefore, how to
design a synthetic gene network to achieve a desired behavior
like oscillation or transient behavior despite parameter fluctu-
ations, uncertain interactions with unknown molecules in the
cellular context, and environmental disturbances belongs to a
robust-tracking design problem. More effort is needed than the
conventional robust stabilization methods. In the robust-tracking
design case, a reference model must be chosen at first to gen-
erate a desired behavior, and then, the robust-tracking design
method must be developed for synthetic gene networks to track
the reference model to achieve the desired behavior.

In this study, a synthetic gene network is designed so that it
can robustly track the desired behavior of a reference model,
despite the intrinsic parameter fluctuations, uncertain inter-
actions with the cellular context, and environmental distur-
bances on the host cell. In this situation, intrinsic parameter
fluctuations of synthetic gene networks are modeled as the
state-dependent stochastic noises, uncertain interactions with
unknown molecules in the cellular context are modeled as
uncertain nonlinear state-dependent couplings with unknown
molecules, and environmental disturbances are also modeled as
the uncertain external signals, i.e., a synthetic gene network in
the host cell is described by a nonlinear stochastic system with
state-dependent noises, uncertain interactions with unknown
molecules, and external disturbances. Based on the theories of
stochastic stability and nonlinear filtering [8], [9], the robust
optimal reference-tracking design of synthetic gene networks
is discussed from the perspective of the nonlinear stochastic-
tracking system. Further, based on four prescribed design spec-
ifications, i.e., the allowable ranges of kinetic parameters and
decay rates, the bound of uncertain interactions with unknown
molecules, the tolerable variances of parameter fluctuations, and
the desired reference model and the optimal reference-tracking
ability, a design procedure is developed for robust synthetic

gene networks. The procedure that matches the prescribed four
design specifications will achieve the robust optimal reference-
tracking purpose, despite the intrinsic parameter fluctuations,
uncertain interactions with unknown molecules, external distur-
bances, and uncertain initial conditions. The optimal-tracking
design of synthetic gene networks is different from the conven-
tional optimal-tracking design of control systems. The first one
is to design a completely new gene network with embedded feed-
back and feedforward gene circuits so that the gene network can
track reference behaviors by itself; the second one is to design
a controller for a controlled system through outside feedback
and feedforward loops so that the state variables of controlled
system can track reference signals. In other words, the synthetic
gene network can track the desired behavior through intrinsic
feedback and feedforward circuits, while the controlled system
tracks the desired behaviors through outside feedback and feed-
forward control loops.

Because of the uncertainties of exogenous uptakes and in-
teractions with the cellular context, i.e., the environmental dis-
turbances, uncertain interactions with unknown molecules, and
uncertain initial conditions, their effects on the desired behavior
tracking of synthetic gene networks should be considered in the
design procedure. From the robust optimal reference-tracking
point of view, the uncertain effects can be efficiently attenu-
ated. Therefore, for the purpose of robust-tracking design of
synthetic gene networks, the effects of all possible uncertain-
ties on the desired behavior tracking should be minimized, i.e.,
the proposed robust optimal reference-tracking design of syn-
thetic gene networks is solved from the minimum mean-square-
tracking error perspective. In general, it is not easy to directly
solve the optimal-tracking design problem for nonlinear stochas-
tic synthetic gene networks. In this study, a suboptimal-tracking
design method is developed for nonlinear stochastic gene net-
works. Since a synthetic gene network is highly nonlinear, it is
still difficult to solve the suboptimal reference-tracking design
problem. This is because it needs to solve a highly nonlinear
second-order Hamilton–Jacobi inequality (HJI), which cannot
be solved analytically or numerically at present. In this study, a
Takagi–Sugeno (T–S) fuzzy system is employed to efficiently
approximate the nonlinear stochastic system of a synthetic gene
network to simplify the design procedure of optimal-tracking
design problem of robust synthetic gene networks.

Recently, T–S fuzzy systems have been employed to approx-
imate nonlinear dynamic systems to efficiently solve the non-
linear control problem [10]–[12]. A fuzzy model is proposed
to interpolate several linearized synthetic gene networks to ap-
proximate a nonlinear synthetic gene network via smooth fuzzy
membership functions. Then, with the help of the T–S fuzzy ap-
proximation method, a fuzzy dynamic-tracking design scheme
is developed so that the optimal desired behavior-tracking de-
sign problem of synthetic gene networks could be easily solved
by the linear dynamic-tracking method, which can be easily
solved by a constrained optimization scheme via the linear ma-
trix inequality (LMI) technique [13] with the help of Robust
Control Toolbox in MATLAB [14]. The design procedure is
also developed to meet the four design specifications so that
the robust optimal reference-tracking design can be achieved
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Fig. 1. Cross-inhibition network and its regulation functions in (1). Suppose
there exist uncertain interactions with unknown molecules (i.e., ζ1 and ζ2 ) that
intertwine with the synthetic gene network.

to track its desired behaviors in vivo, in spite of the intrinsic
parameter perturbations, uncertain interactions with unknown
molecules, and environmental disturbances on the host cell. In
order to avoid the design difficulty to solve LMIs in tracking
a desired periodic or oscillatory reference model with eigen-
values all on image axis (i.e., jω-axis), an eigenvalue-shifted
technique is also proposed as an expedient method to provide
design feasibility to overcome the LMI-constrained problem in
the periodicity or oscillation-tracking design of synthetic gene
networks. Obviously, the proposed robust optimal-tracking de-
sign method has much potential application to the nascent field
of synthetic gene networks. Finally, two in silico examples are
given to illustrate the design procedure and to confirm the effi-
ciency under uncertain initial conditions, uncertain interactions
with unknown molecules, intrinsic parameter fluctuations, and
external disturbances.

II. STOCHASTIC SYNTHETIC GENE NETWORK MODEL WITH

INTRINSIC PARAMETER FLUCTUATIONS, UNCERTAIN

INTERACTIONS WITH UNKNOWN MOLECULES,
AND EXTERNAL DISTURBANCES

The parameter fluctuations, uncertain interactions with un-
known molecules, and external disturbances on the host cell
make synthetic gene networks difficult to track their desired
behaviors. To overcome this design problem, the parameter
fluctuations, uncertain interactions with unknown molecules,
and external disturbances should be considered in the dynamic
model of synthetic gene networks to mimic their real-dynamic
behaviors in the host cell. Besides, the tracking performance
should be considered in the design procedure. For the conve-
nience of illustration, a simple example is provided to outline
the robust optimal reference-tracking design of synthetic gene
networks under intrinsic parameter fluctuations, uncertain in-
teractions with unknown molecules, and external disturbances
on the host cell. Consider the cross-inhibition network shown
in Fig. 1 [3]. The network is synthesized by two genes a and b,
which code for two repressor proteins A and B. More specif-
ically, protein B represses the expression of gene a, whereas
protein A represses the expression of gene b and, at a higher
concentration, the expression of its own gene. This system can
be modeled by differential equations as follows [3]:

ẋa = κaHa1 (xb) Ha2 (xa) − γaxa

ẋb = κbHb (xa) − γbxb . (1)

The state variables xa(t) and xb(t) denote the concentrations
of proteins A and B. x(t) = [xa(t), xb(t)]T is the vector of the
state variables. κi and γi are the production and degradation rate
parameters, respectively, and Hi(·) is the regulation function,
which captures the regulatory effect of an effector protein on
gene expression and is a smooth sigmoidal function (e.g., Hill
function, see Fig. 1) [15], [16]. The product of the regulation
function can be used to capture complex genetic regulations. For
example, the product of the regulation function in (1) captures
the hypothesis, which, in order to have a maximal expression
of a gene, must show how the concentration changes. Some pa-
rameters are inherently uncertain in this nanoscale biochemical
system [16]. We assume that the production and/or the degrada-
tion rate parameters (i.e., κi and γi) of synthetic gene networks
are stochastically uncertain due to gene expression noises in
transcriptional and translational processes, thermal fluctuations,
DNA mutation, and evolution [16], as follows:

κa → κa + Δκana , κb → κb + Δκbnb

γa → γa + Δγana , γb → γb + Δγbnb (2)

where Δκi and Δγi , i = a, b denote the amplitudes of stochas-
tic parameter variations, and ni(t), i = a, b are white noises
with zero means and unit variances. Thus, Δκi and Δγi de-
note the deterministic part of parameter variations, and ni (t)
denotes the stochastic property of intrinsic parameter fluctua-
tions. na (t) and nb (t) are two independent stochastic sources
of random parameter fluctuations. The covariance of Δκana(t)
and Δγana(t) are given as Cov(Δκana(t),Δκana(τ)) =
Δκ2

aδt,τ and Cov(Δγana(t),Δγana(τ)) = Δγ2
a δt,τ , respec-

tively, where δt,τ denotes the delta function, i.e., δt,τ = 1 if
t = τ and δt,τ = 0 if t �= τ . Therefore, Δκa and Δγa denote
the standard deviations of the stochastic parameter fluctuations
Δκana(t) and Δγana(t), respectively.

Suppose the synthetic gene network suffers from the external
disturbances va (t) and vb (t) on the host cell due to the chang-
ing extracellular environment, uncertain interactions l1 (x) and
l2 (x) with unknown molecules ζ1 (t) and ζ2 (t), respectively,
in the cellular context, etc. In general, the external disturbances
and unknown molecules are also stochastic. Then, the stochas-
tic synthetic gene network in the host cell can be described as
follows:[
ẋa

ẋb

]
=
[
(κa + Δκana)Ha1(xb)Ha2(xa) − (γa + Δγana)xa

(κb + Δκbnb)Hb(xa) − (γb + Δγbnb)xb

]

+
[

l1(x)ζ1
l2(x)ζ2

]
+
[

va

vb

]

=
[

κaHa1(xb)Ha2(xa) − γaxa

κbHb(xa) − γbxb

]

+
[

l1(x) 0
0 l2(x)

] [
ζ1
ζ2

]
+
[

Δκa −Δγa
0 0

]

×
[

Ha1(xb)Ha2(xa)
xa

]
na

+
[

0 0
Δκb −Δγb

] [
Hb(xa)

xb

]
nb +

[
va

vb

]
. (3)
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For the convenience of analysis and design, the stochastic
synthetic gene network in (3) can be represented by the follow-
ing Ito stochastic differential equation:[

dxa

dxb

]
=
{[

κaHa1 (xb) Ha2 (xa) − γaxa

κbHb (xa) − γbxb

]

+
[

l1 (x) 0
0 l2 (x)

] [
ζ1
ζ2

]
+
[

va

vb

]}
dt

+
[

Δκa −Δγa
0 0

] [
Ha1 (xb) Ha2 (xa)

xa

]
dWa

+
[

0 0
Δκb −Δγb

] [
Hb (xa)

xb

]
dWb,

[
xa(0)
xb(0)

]

=
[

xa0
xb0

]
(4)

where Wi , i = a, b is a standard Wiener process or a Brown-
ian motion with dWi = ni (t) dt [9]. [xa(0), xb(0)]T denotes
the initial values of the synthetic gene network and is always
uncertain. The stochastic nonlinear differential equation in (4)
is given to illustrate the synthetic gene network in a biologi-
cal milieu, which suffers from intrinsic parameter fluctuations,
uncertain interactions with cellular context, and extrinsic dis-
turbances on the host cell. Instead of (1), the robust optimal
reference-tracking design should consider the stochastic non-
linear system in (4) as a synthetic gene network model to mimic
the dynamic behaviors in a real-host cell.

In this simple synthetic gene network design case, we want
to design two kinetic parameters κa and κb and two decay rates
γa and γb within the following allowable ranges:

κa ∈ [κa , κ̄a ] ,κb ∈ [κb, κ̄b ] ,γa ∈
[
γ

a
, γ̄a

]
,γb ∈

[
γ

b
, γ̄b

]
(5)

such that the following desired reference model could be ro-
bustly tracked by the stochastic synthetic gene network in (4):[

ẋr1 (t)
ẋr2 (t)

]
= Ar

[
xr1 (t)
xr2 (t)

]
+
[

r1 (t)
r2 (t)

]
(6)

where Ar and [r1 (t) , r2 (t)]T are specified by a designer such
that the vector [xr1(t), xr2(t)]T in (6) has the desired behav-
iors to be tracked by [xa(t), xb(t)]T in (4), despite the intrin-
sic parameter fluctuations, uncertain interactions with unknown
molecules, and external disturbances on the host cell.

Now, consider a more general synthetic gene network design
case. We extend the two-genes system in (4) to an n-genes
system as follows:

dx = (f (x, κ, γ) + l (x) ζ + v) dt +
m∑

j=1

Mjgj (x)dWj

x (0) = x0 (7)

where the state vector x = [x1 , . . . , xn ]T denotes the con-
centrations of proteins in the synthetic gene network, and
f(x, κ, γ) denotes the nonlinear regulation consisting of sig-
moidal regulation functions between these genes. l (x) denotes
the uncertain interactions with unknown molecules ζ (t) =
[ζ1 (t) . . . ζl (t)]T . Suppose the uncertain interactions l (x) with

unknown molecules can be bounded as follows:

‖l (x)‖ ≤ c (8)

for some positive constant c.
The kinetic parameters κ = [κ1 , . . . , κn ] and decay rates

γ = [γ1 , . . . , γn ] are both to be designed so that the state vector
x (t) in (7) can track the desired behavior xr (t). The last term
in (7) denotes the stochastic parameter fluctuations due to m
random sources, and v (t) = [v1 (t) , . . . , vn (t)]T denotes the
vector of external disturbances. The elements of the perturbative
matrix Mj denote the corresponding perturbation amplitudes or
the standard deviations of the corresponding stochastic parame-
ter fluctuations due to m random noise sources. In the synthetic
gene network design Mj , j = 1, . . . , m given by the designer,
denote the prescribed amplitudes (or standard deviations) of pa-
rameter fluctuations to be tolerated by synthetic gene networks
according to a real-statistical estimation on the host cell.

Remark 1: 1) If some components of κ and γ are contained
in gj (x), then gj (x) can be replaced by gj (x, κ, γ). 2) If the
equilibrium point of dx = f (x, κ, γ) dt is not at the origin, it
should be shifted to the origin for the convenience of design.
3) Unlike the conventional-tracking control design for a plant by
control inputs from the outside feedback loops, the proposed op-
timal synthetic design method is to select adequate parameters
κ and γ to influence the feedback abilities and kinetic proper-
ties of imbedded biochemical circuits so that the synthetic gene
network can robustly track some desired behaviors by itself in
the host cell. Therefore, there are some differences between
the proposed robust optimal reference-tracking design and the
conventional-tracking control design. The proposed robust syn-
thetic gene network lies in the design of embedded gene circuits
to track the desired behaviors via intrinsic gene circuits by itself,
but the conventional-tracking control system is through the out-
side control signals based on feedback and/or feedforward loops
to track the desired behaviors for controlled plants [17]–[19].

III. ROBUST SYNTHETIC GENE NETWORK DESIGN

VIA DESIGN SPECIFICATIONS

In general, the stochastic system in (7) is an extension of the
stochastic system of a synthetic gene network in (4) from two to
n genes. Based on the earlier analysis, the design specifications
of the robust optimal reference-tracking design problem for a
synthetic gene network are described in the following.

i) Formulate the nonlinear stochastic system in (7) with the
prescribed standard deviations of parameter fluctuations
Mj and the bounded uncertain interactions l (x) in (8) with
unknown molecules ζ (t) to be tolerated by the synthetic
gene network.

ii) Provide the allowable ranges of kinetic parameters and
decay rates to be designed

κ ∈ [κ, κ̄] , γ ∈
[
γ, γ̄

]
(9)

where κ and κ̄ and γ and γ̄ denote the lower and upper
bounds of the feasible kinetic parameter vector κ and the
decay rate vector γ, respectively. The allowable ranges
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of design parameters are dependent on the corresponding
biotechnology and the kinds of the host cell.

iii) Provide a reference model that can generate the desired
behavior to be tracked as follows:

ẋr (t) = Arxr (t) + r, xr (0) = 0 (10)

where Ar and r are specified beforehand to generate a
desired behavior xr (t) to be tracked by x(t). Since r can
be an arbitrary value specified by the designer, it can be
also considered as an uncertain signal to the synthetic gene
network.

iv) Specify κ and γ to achieve the following robust optimal-
tracking design:

min
κ∈[κ, κ̄ ]
γ∈[γ , γ̄ ]

E

∫ tf

0
(x (t) − xr (t))T Q (x (t) − xr (t)) dt

(11)
i.e., the tracking error x(t) − xr (t) should be minimized
to efficiently eliminate the effects of parameter fluctua-
tions, uncertain interactions with unknown molecules, and
environmental disturbances from the average energy per-
spective. Q is a symmetric weighting matrix. For example,
if we only want to track the output xn (t), then Q can be
chosen as Q = diag ([0 0 · · · 0 1]).

Remark 2:
1) The reference matrix Ar in (10) is determined by the

transient time of the reference model. The input r is deter-
mined by the steady state xrs = −A−1

r r, where xrs is the
desired steady state given by the user of the synthetic gene
network [18]. Moreover, if we want to track desired oscil-
lations with frequencies at ω1 , ω2 , . . . , ωl , then we can
let A = diag [jω1 , −jω1 , jω2 , −jω2 , . . . , jωl , −jωl ]
for the reference model in (10).

2) The stochastic optimal-tracking design in (11) is an
optimal-tracking design method with efficient attenuation
of parameter fluctuations, uncertain interactions with un-
known molecules in the cellular context, and external dis-
turbances on the host cell in which the synthetic gene
network will be inserted [20].

3) In general, the H∞ tracking design is formulated as a
robust-tracking problem to attenuate the v (t) on the track-
ing error x (t) − xr (t) below a prescribed level as fol-
lows [5], [6]:

E
∫ tf

0 (x (t) − xr (t))T Q (x (t) − xr (t))dt

E
∫ tf

0 vT (t) v (t)dt
≤ ρ2 .

(12)
The H∞ robust-tracking design is based on the fact that sta-

tistical information of v (t) and x (0) is unavailable or unknown.
Therefore, the upper bound of the ratio [or the effect of v (t)
on x (t) − xr (t)] is considered for all possible v (t). In general,
the result of the robust H∞ tracking design is more conservative
because we do not need the statistical information of x (0) and
v (t). In the study, we assume the statistical knowledge of x (0)
and v (t) are available from this experiment or the other statis-
tical measurement. Therefore, the stochastic optimal-tracking

design is employed to minimize the mean-square-tracking error
due to all stochastic uncertainties. In this situation, the proposed
robust-tracking design is with a less-conservative result.

From the aforementioned analysis, our design purpose is to
specify kinetic parameters κ and decay rates γ such that the
design specifications i)–iv) for synthetic gene networks can be
achieved simultaneously. If the design specifications i)–iv) are
guaranteed, then the purpose of the robust optimal reference-
tracking design for synthetic gene networks can be achieved
within some feasible parameter ranges in spite of parameter
fluctuations, uncertain interactions with unknown molecules,
and environmental disturbances on the host cell. In general, it
is hard to solve the robust optimal-tracking design problem in
(11) subject to design specifications i)–iv). The robust optimal-
tracking design problem should be transformed to an equivalent
robust optimal-regulation design problem via an augmented sys-
tem to simplify the design procedure.

Let us combine the reference model in (10) with the stochastic
gene network in (7) as an augmented system

[
dxr

dx

]
=

⎛
⎝[ Arxr

f(x, κ, γ)

]
+
[

I 0 0
0 I l (x)

]⎡⎣ r
v
ζ

⎤
⎦
⎞
⎠ dt

+
m∑

j=1

[
0

Mjgj (x)

]
dWj (13)

or equivalently

dx̄ =
(
f̄(x̄, κ, γ) + l̄ (x̄) v̄

)
dt +

m∑
j=1

M̄j ḡj (x̄) dWj (14)

where x̄ =
[

xr

x

]
, v̄ =

⎡
⎣ r

v
ζ

⎤
⎦, f̄(x̄, κ, γ) =

[
Arxr

f(x, κ, γ)

]
,

M̄j =
[

0
Mj

]
, l̄ (x̄) =

[
I 0 0
0 I l (x)

]
, ḡj (x̄) = gj (x) .

Let us denote

J(κ, γ) = E

∫ tf

0
(x − xr )

T Q (x − xr ) dt.

Then, the tracking error in (11) can be represented as the
following regulation error of the augmented system in (14):

J(κ, γ) = E

∫ tf

0
x̄T Q̄x̄dt (15)

where Q̄ =
[
−I
I

]
Q [−I I ].

After the augmented system in (13) is obtained, the robust
optimal-tracking design is discussed in the following. How to
design kinetic parameters κ and decay rates γ of the stochastic
synthetic gene network in (7) to optimally track the reference
model in (10) is equivalent to how to design κ and γ to solve the
following optimal regulation design problem for the augmented
system in (14):

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

J(κ, γ) = min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

E

∫ tf

0
(x − xr )T Q(x − xr )dt
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= min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

E

∫ tf

0
x̄T Q̄x̄dt. (16)

Based on the augmented system in (14), the robust optimal-
tracking design problem is transformed to an equivalent robust
regulation design problem of the augmented system in (14) and
(16). However, it is still very complicated to solve the nonlinear
stochastic optimal regulation design problem in (14) and (16). A
suboptimal regulation design method is introduced to simplify
the design problem, i.e., to minimize the upper bound of J (κ, γ)
in (16) instead of minimizing J (κ, γ) directly.

In this case, let us choose a Lyapunov (energy) function
V (x̄) > 0 for the augmented stochastic system in (14). Based
on the Lyapunov function, we obtain the following result.

Proposition 1: The suboptimal-tracking design for synthetic
gene networks is to solve the following constrained optimization
problem:

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

EV (x̄ (0)) (17)

subject to

V (x̄) > 0

x̄T Q̄x̄ +
(

∂V (x̄)
∂x̄

)T

f̄(x̄, κ, γ)

+
1
4

(
∂V (x̄)

∂x̄

)T

S

(
∂V (x̄)

∂x̄

)

+
1
2

m∑
j=1

ḡT
j (x̄) M̄T

j

∂2V (x̄)
∂x̄2 M̄j ḡj (x̄) < 0 (18)

where S =
[

I 0
0
(
c2 + 1

)
I

]
with c defined in (8).

Proof: See Appendix A.
EV (x̄ (0)) in (17) is the upper bound of the tracking error

in (15) if the HJI in (18) holds, and V (x̄) is a positive solu-
tion of HJI in (18), i.e., the suboptimal-tracking design prob-
lem is to specify kinetic parameters κ ∈ [κ, κ̄] and decay rates
γ ∈ [γ, γ̄] of the gene circuit of the synthetic gene network
to minimize the upper bound of the tracking error under the
HJI constraint in (18). In general, there is no good method to
solve HJI in (18) for the nonlinear stochastic optimal-tracking
design problem. Therefore, it is very difficult to solve the con-
strained optimization problem in (17) to get the design kinetic
parameters κ and decay rates γ to achieve the robust optimal
reference-tracking performance under intrinsic parameter fluc-
tuations, uncertain interactions with unknown molecules, and
external disturbances on the host cell. In the following section,
the fuzzy stochastic scheme will be employed to simplify the
design procedure of robust optimal-tracking design problem for
the nonlinear stochastic gene network. �

Remark 3:
1) When the H∞ tracking design (12) is employed for robust-

tracking design for a prescribed attenuated level ρ, we need to

solve a V (x) > 0 for the following HJI:(
∂V (x̄)

∂x̄

)T

f̄(x̄, κ, γ) +
1
2

m∑
j=1

ḡT
j (x̄) M̄T

j

∂2V (x̄)
∂x̄2 M̄j ḡj (x̄)

+
1

4ρ2

(
∂V (x̄)
∂x̄2

)T

S

(
∂V (x̄)
∂x̄2

)
+ x̄T Q̄x̄ < 0 (19)

and the optimal H∞ tracking design solves the following con-
strained optimization:

min
κ,γ

ρ (20)

subject to V (x̄) > 0, HJI in (19).
2) According to [6], we want to design a gene circuit ẋ =

f (x, κ, γ) + v under disturbance to achieve minimax regulation

min
κ,γ

max
x̃(0),v

E
∫ tf

0 (x − xd)
T Q (x − xd)dt∫ tf

0 (vT v) dt + x̃ (0) x̃ (0)
≤ g2 (21)

in which xd is a constant steady state and the worse-case effect of
v (t) and x (0) on the regulation x − xd is to be minimized. g2 is
the upper bound of this effect. When the worse case disturbance
v∗ = (1/2g2)(∂V (x̃) /∂x̃) is considered in the minimax (game
theory) design, the robust synthetic design problem becomes to
how to solve the following constrained optimization problem
[6, Prop. 1]:

min
κ,γ

g2

subject to{
∂V (x̃)

∂ x̃ f(x̃ + xd, κ, γ) + x̃T Qx̃ + 1
4g 2

(
∂V (x̃)

∂ x̃

)T (
∂V (x̃)

∂ x̃

)
<0

E [V (x̃ (0))] ≤ g2E
[
x̃T (0) x̃ (0)

]
(22)

where x̃ = x − xd .
Since the worse-case disturbance v∗ is used, the design is

more conservative. Further the synthetic gene network is de-
signed to achieve the desired constant-tracking steady state xd ,
it cannot track the changeable or periodic target.

In this study, the proposed method can design a robust syn-
thetic gene network with parameter fluctuations, uncertain in-
teractions with unknown molecules, and external disturbances
in (7) such that it can achieve the following stochastic optimal
tracking:

min
κ,γ

E

∫ tf

0
(x − xr )

T Q (x − xr )dt

where
∑m

i=1 MigidWi is due to parameter fluctuations, l (x) ζ
is due to interactions with unknown molecules, and xr is any
reference signal generated by the reference model ẋr = Arxr +
r. By the suboptimal design method, the stochastic optimal
tracking becomes how to solve the constrained optimization (17)
and (18) (see Proposition 1). Obviously, they are two different
constrained optimization design problems. The main differences
with [6] are pointed out as follows.

1) The study in [6] considered a constant steady-state reg-
ulation design problem under disturbance; the proposed
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method is a model reference-tracking design problem un-
der parameter fluctuations, uncertain interactions with un-
known molecules, and external disturbances.

2) The design performance indices are different. The method
in [6] considers the minimization of worst-case effect of
external disturbances; the proposed method provides four
design specifications to achieve the robust stochastic op-
timal mean-square-tracking design.

3) Since the Ito stochastic model is considered for intrinsic
parameter fluctuations, the second-order HJI constraint in
our method is different from the first-order HJI constraint
in [6].

IV. ROBUST OPTIMAL REFERENCE-TRACKING DESIGN OF

SYNTHETIC GENE NETWORK: FUZZY DYNAMIC APPROACH

In general, the robust optimal reference-tracking design of
synthetic gene networks under intrinsic parameter fluctuations,
uncertain interactions with unknown molecules, and external
disturbances needs to solve an HJI-constrained optimization
problem in (18). At present, there is no analytic or numerical
solution for HJI in (18). Recently, the T–S fuzzy model [9],
[10], [17] had been widely applied to approximate the nonlinear
system via interpolating several linearized systems at different
operation points. Hence, the robust optimal reference-tracking
design of nonlinear stochastic synthetic gene networks can be
transformed to a tracking design problem of fuzzy-interpolation
linear systems.

Suppose the augmented system in (14) can be represented by
the T–S fuzzy model [21]. The T–S fuzzy model is a piece-
wise interpolation of several linearized models through the
membership functions. The fuzzy model is described by sev-
eral if–then rules and will be employed to deal with the robust
model-tracking design problem of nonlinear stochastic gene net-
works under intrinsic parameter fluctuations, uncertain interac-
tions with unknown molecules, and external disturbances. The
ith rule of the fuzzy model for the nonlinear stochastic system in
(14) can be expressed as the following form [8], [9], [18]–[32]:

Rule i: If x1 is Fi1 , x2 is Fi2 , . . ., and xn is Fin , then

dx̄ = (Āi(κ, γ)x̄ + l̄(x̄)v̄)dt

+
m∑

j=1

M̄j B̄ij x̄dWj , i = 1, . . . , L (23)

where

Āi(κ, γ) =
[

Ar 0
0 Ai(κ, γ)

]
, l̄(x) =

[
I 0 0
0 I l(x)

]
, M̄j =[

0
Mj

]
, B̄ij = [ 0 Bij ]

and Fij is the fuzzy set, Ai (κ, γ) denotes a matrix with the
components of kinetic parameters κ and decay rates γ in its
elements, L is the number of if–then rules, n is the number of
premise variables, and x1 , ..., xn are the premise variables.

Remark 4: 1) If ḡj (x̄) in (14) is replaced by ḡj (x̄, κ, γ), then
B̄ij in (23) should be replaced by B̄ij (κ, γ) to contain some
components of κ and γ in its elements. 2) The fuzzy approx-
imation errors are also included into uncertain disturbances v̄.
Therefore, the effects of fuzzy approximation errors on the track-
ing errors could be attenuated by the minimum-error-tracking
design of synthetic gene networks.

The fuzzy system can be inferred as follows [10], [11],
[21]–[37]:

dx̄ =∑L
i=1 μi (x)

([
Āi (κ, γ) x̄ + l̄ (x̄) v̄

]
dt +

∑m
j=1 M̄j B̄ij x̄dWj

)
∑L

i=1 μi (x)

=
L∑

i=1

hi (x)

⎛
⎝[Āi(κ, γ)x̄ + l̄(x̄)v̄]dt +

m∑
j=1

M̄j B̄ij x̄dWj

⎞
⎠
(24)

where μi (x) =
∏n

j=1 Fij (xj (t)), hi(x) = μi (x) /∑L
i=1 μi (x), x = [x1 , ..., xn ]T , and Fij (xj ) is the grade

of the membership function of xj in Fij .
We assume [22]

μi (x) ≥ 0 and
L∑

i=1

μi(x) > 0∀ t (25)

Therefore, we get the fuzzy bases as hi (x) ≥ 0 and∑L
i=1 hi(x) = 1 ∀ t.
The T–S fuzzy model in (24) is to interpolate L linear stochas-

tic systems to approximate the nonlinear stochastic system in
(14) via the fuzzy basis function hi(x). We can specify the matri-
ces Āi(κ, γ) and B̄ij , i = 1, ..., L so that

∑L
i=1 hi(x)Āi(κ, γ)x̄

and
∑L

i=1 hi(x)B̄ij x̄ in (24) can approximate f̄(x̄, κ, γ) and
ḡj (x̄) in (14) by the fuzzy identification method [21], [22],
respectively. After approximating the nonlinear stochastic sys-
tem in (14) by using the T–S fuzzy system in (24), the non-
linear stochastic dynamic problem in (14) could be replaced
by solving the fuzzy stochastic problem in (24) such that the
stochastic-tracking design problem in (16) can be solved [38].
In the Proposition 1, based on the fuzzy approximation, if we
choose the Lyapunov function V (x̄) = x̄T P x̄, where P is a
positive-definite matrix, then we can get the following robust
optimal reference-tracking design of synthetic gene networks
by a fuzzy stochastic-tracking scheme.

Proposition 2: Based on the T–S fuzzy approximation, the
suboptimal-tracking design in (16) for synthetic gene networks
can be solved by the following constrained optimization:

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

Ex̄T (0)P x̄(0) = min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

TrPR0 (26)
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subject to

P > 0⎡
⎢⎣

ĀT
i (κ, γ)P + PĀi(κ, γ) + Q̄

+
m∑

j=1
B̄T

ij M̄
T
j PM̄j B̄ij

PS

SP −S

⎤
⎥⎦ < 0, i = 1, . . . , L

(27)

where Ro denotes the covariance matrix E
[
x̄ (0) x̄T (0)

]
, S =[

I 0
0
(
c2 + 1

)
I

]
with c defined in (8).

Proof: See Appendix B
In Proposition 2, the upper bound of tracking errors in (26) is

a function of P , which is a positive-definite solution of LMIs in
(27). Therefore, our robust optimal-tracking design is to specify
κ and γ within allowable ranges such that the upper bound of
tracking errors is as small as possible. �

Remark 5:
1) The fuzzy basis function hi(x) in (24) can be replaced by

the other interpolation functions, for example, the cubic
spline function.

2) By fuzzy approximation, the HJI in (18) of the nonlinear
stochastic-tracking design problem is replaced by a set of
LMIs in (27), which can be more easily solved. Since these
design parameters are constrained within the allowable
ranges of kinetic parameters κ ∈ [κ, κ̄] and decay rates γ ∈
[γ, γ̄], there is no closed-form solution for the constrained
optimization problem in (26) and (27). In this situation,
the genetic algorithm should be combined with Robust
Control Toolbox in MATLAB to solve this constrained
optimization problem via convex optimization techniques
[13].

3) In general, S ≥ I in (18) and (27). If the synthetic gene
network is free of interactions with unknown molecules
in cellular context, i.e., l(x) = 0 or c = 0, then S = I .
Therefore, the synthetic gene network needs more effort to
tolerate the uncertain interactions of unknown molecules
to avoid their effects on the reference tracking.

4) If fuzzy approximation errors are considered in the design
procedure [10], [11], some extra terms should be included
in (27). However, since the main focus of this research
is on the applications of the fuzzy theory to the robust-
tracking design in the nascent field of synthetic gene net-
works, they are neglected in the design procedure. Further,
the approximation errors can be merged into the external
disturbance v and can be efficiently eliminated by the ro-
bust optimal-tracking design. As shown in the simulation
example in the sequel, the effect of the approximation er-
ror can be efficiently attenuated by the proposed robust
optimal-tracking design.

Remark 6:
In the genetic oscillator design case, the eigenvalues of Ar in

reference model are always on the jω-axis to generate periodic
signals, i.e., one half of eigenvalues of Āi are on the jω-axis
(i.e., with zero real parts). In this situation, it is not easy to
specify κ and γ to satisfy the LMIs in (27) and to solve the

optimal-tracking design problems in (26) and (27). In order
to overcome this difficulty, an eigenvalue-shifted technique is
proposed as an expedient scheme to treat the oscillation-tracking
design problem. Let us adjust the system variables in (24) by
x̄s (t) = e−λt x̄ (t) for a positive value λ, then x̄s (t) can be
obtained by the following eigenvalue-shifted system:

dx̄s =
L∑

i=1

hi (xs) [([Āi (κ, γ) − λI]x̄s + l̄(x̄s)v̄s)dt

+
m∑

j=1

M̄j B̄ij x̄sdWi ] (28)

where v̄s = e−λt v̄.
For the eigenvalue-shifted system in (28), suppose we want to

specify κ and γ to minimize the following tracking performance:

J(κ, γ) = E

∫ tf

0
x̄T

s (t)Q̄x̄s(t)dt (29)

which is the same as (15), except that x̄ (t) is replaced by x̄s (t),
i.e., we use the eigenvalue-shifted system (28) to replace (24)
and use the tracking performance in (29) to replace the tracking
performance in (15).

In this transformation case, the tracking design problem is
relaxed how to specify κ and γ in (28) to minimize J (κ, γ)
in (29). By Proposition 2, the suboptimal-tracking design is
modified as follows:

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

E
[
x̄T

s (0) P x̄s (0)
]

= min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

TrPR0 (30)

subject to

P > 0⎡
⎢⎢⎣
(
Āi (κ, γ) − λI

)T
P + P

(
Āi (κ, γ) − λI

)
+Q̄ +

m∑
j=1

B̄T
ij M̄

T
j PM̄j B̄ij

PS

SP −S

⎤
⎥⎥⎦ < 0.

(31)

In the earlier expedient method, due to more negative eigen-
values of Āi (κ, γ) − λI in (31), we have this more feasible
way to solve the optimal design problem of tracking periodic
reference signals. However, in order to avoid some distortions
due to the signal transformation, λ should be selected as small
as possible so that its influence on the tracking performance is
as small as possible. In this situation, we could take λ ∈ [0, λ̄] as
another performance to be minimized simultaneously and need
to solve the following constrained optimization for the robust
optimal-tracking design problem of the synthetic gene network:

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

λ∈
[
0,λ̄
]

TrPR0 + λ (32)

subject to P > 0, (31).
This eigenvalue-shifted technique will be confirmed and dis-

cussed in the design example in the sequel.
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Fig. 2. Synthetic transcriptional cascade. TetR represses lacI, LacI represses
cI, CI represses eyfp, and aTc activates the repression of lacI by TetR. The
fluorescence of the protein EYFP is the output. In this cascade, there exist
uncertain interactions with three unknown molecules (ζ1 , ζ2 , ζ3 ) that intertwine
with the synthetic gene network.

According to the aforementioned analysis, the robust opti-
mal reference-tracking design procedure for synthetic gene net-
works under intrinsic parameter fluctuations, uncertain inter-
actions with unknown molecules, and external disturbances is
summarized in the following.

Design procedure:
1) Construct the nonlinear stochastic dynamic model (7) for

a synthetic gene network.
2) Provide the design specifications i)–iv).
3) Construct the T–S fuzzy model (24) to approximate non-

linear stochastic dynamic model (7).
4) Solve the constrained optimization problem in (26) and

(27), or (30) and (31), or (32) for the design kinetic pa-
rameters κ and decay rates γ from the allowable parameter
ranges.

Remark 7: The software package such as Robust Control
Toolbox in MATLAB [14] can be employed to solve the LMI-
constrained optimization problem in (26) and (27), or (30) and
(31), or (32) easily.

V. DESIGN EXAMPLE In Silico

In this section, two examples are given to illustrate the design
procedure and then to confirm the performance of the proposed
robust optimal reference-tracking design method of synthetic
gene networks. The first example is given to illustrate the ro-
bust optimal transient response tracking of a desired synthetic
transcriptional cascade. The second example is a robust optimal-
tracking design of a simple synthetic genetic oscillator with the
desired amplitude and period.

Example 1: Consider synthesizing a cascade of transcrip-
tional inhibitions built in E. coli [39]; a synthetic gene network
is then represented in Fig. 2. It consists of four genes, i.e.,
tetR, lacI, cI, and eyfp, that code for the three repressor pro-
teins TetR, LacI, CI, and the fluorescent protein EYFP, respec-
tively [3]. In the synthetic transcriptional cascade, the protein
TetR represses gene lacI, the protein LacI represses gene cI,
and the protein CI represses gene eyfp. The fluorescence pro-
tein (i.e., protein EYFP) is the measured output. The system
can be activated by the addition or removal of a small dif-
fusible molecular aTc in the growth media. More precisely, aTc
binds to TetR and relieves the repression of lacI [3]. The aTc
concentration serves as an external input to the synthetic gene
network. For the convenience of representation, let us denote
x = [xtetR , xlacI , xcI , xeyf p ]T = [x1 , x2 , x3 , x4 ]

T and the

external input u = uaTc . The dynamic equations of the synthetic
gene network in Fig. 2 are given as follows [1], [39]:

ẋ1 = κ10 − γ1x1 + v1

ẋ2 = κ20 + κ2(H2(x1) + Ha(u)

− H2(x1)Ha(u)) − γ2x2 + v2

ẋ3 = κ30 + κ3H3(x2) − γ3x3 + v3

ẋ4 = κ40 + κ4H4(x3) − γ4x4 + v4 (33)

where the vector κ0 = [κ10 , κ20 , κ30 , κ40 ]T = [150, 587,

160, 3487]T is a constant vector and denotes the basal levels
of proteins, which are not easy to measure and can be consid-
ered as one kind of disturbances. Hi (x), i = 2, 3, 4 are all Hill
functions for repressors, which are decreasing S-shaped curves
and can be described as the form Hi (x) = β/(1 + (x/Ki)n )
with β = 1, n = 2, and Ki = 2000. Ha (u) is a Hill func-
tion for activators (aTc is an activator), which is an increas-
ing S-shaped curve and has the form r (x) = xn/(xn + An )
with n = 2 and A = 2000 [15], [16]. In summary, the term
H2(x1) + Ha(u) − H2(x1)Ha(u) is the regulation to model
the logical ‘‘OR’’ function. The vector of κ = [κ2 , κ3 , κ4 ]

T

and γ = [γ1 , γ2 , γ3 , γ4 ]
T contain the corresponding kinetic

parameters and decay rates, respectively. The vector of v =
[v1 , v2 , v3 , v4 ]

T denotes the environmental disturbances. Sup-
pose we want the behaviors of the synthetic gene network to
track the trajectories of a desired reference model by designing
the kinetic parameter κ and the decay rate γ. u = uaTc , which
is a constant, is the input to the synthetic gene network. We as-
sume that the value of anhydrotetracycline input concentration
is 104 (i.e., uaTc = 10 000).

Suppose the synthetic gene network suffers from the stochas-
tic parameter fluctuations with standard deviations and the
bounded uncertain interactions l (x) with unknown molecules
ζ = [ζ1 , ζ2 , ζ3 ]

T in the host cell as follows:

Δκ0 = (Δκ10 ,Δκ20 ,Δκ30 ,Δκ40) = (30, 50, 30, 50)

Δκ = (Δκ2 ,Δκ3 ,Δκ4) = (200, 50, 200)

Δγ = (Δγ1 ,Δγ2 ,Δγ3 ,Δγ4) = (0.03, 0.03, 0.03, 0.03)

‖l (x)‖ ≤ 0.4. (34)

Then, the synthetic gene network under intrinsic parameter
fluctuations, uncertain interactions with unknown molecules,
and extrinsic disturbances can be described in the host cell as
follows:

dx = (f(x, κ, γ) + l(x)ζ + v)dt +
4∑

j=1

Mjgj (x, κ, γ)dWj .

(35)
Suppose the biological allowable ranges of kinetic parameters

and decay rates to be selected are given by [3]

κ2 ∈ [70, 7000] , κ3 ∈ [75, 8000] , κ4 ∈ [30, 30 000]

γ1 ∈ [0.1, 0.2] , γ2 ∈ [0.02, 0.07]

γ3 ∈ [0.8, 0.97] , γ4 ∈ [0.1, 0.95] (36)



CHEN AND WU: ROBUST OPTIMAL REFERENCE-TRACKING DESIGN METHOD FOR STOCHASTIC SYNTHETIC BIOLOGY SYSTEMS 1153

Fig. 3. In order to confirm the robust optimal reference tracking of the
synthetic gene network in the in silico example, the synthetic gene net-
work with the minimum error tracking is designed with optimal kinetic pa-
rameters κo = (κ2 , κ3 , κ4 ) = (3814.9, 75.4, 10910) and decay rates γo =
(γ1 , γ2 , γ3 , γ4 ) = (0.15, 0.0734, 0.3202, 0.4585). The Monte Carlo simu-
lation is given with 20 rounds and random initial conditions to demonstrate the
robust ability of optimal reference tracking. It is obviously seen that the con-
centrations of the synthetic gene network can robustly track the trajectories of
the reference model despite parameter fluctuations, uncertain interactions with
unknown molecules, and environmental disturbances. While the external input
uaTc diffuses into the host cell, the system can track the reference system.

such that the synthetic gene network can optimally track the
following reference model with desired behaviors:

dxr = Arxr + r (37)

where Ar = diag ([−0.15,−0.2,−0.3,−0.5]) and
r = [150, 1000, 150, 15 000]T . The reference model is set
so that the synthetic gene network has desired transient
behaviors and the desired steady states of xr are with
[1000, 50 000, 500, 30 000]T (see Fig. 3).

After developing the stochastic dynamic system in (35)
for the synthetic gene network in Fig. 2, we need to design
κ = [κ2 , κ3 , κ4 ] and γ = [γ1 , γ2 , γ3 , γ4 ] from the allowable
ranges in (36) so that the states of the synthetic gene network
can optimally track the desired states of the reference model in
(37). Because it is difficult to solve the nonlinear HJI in (18),
the T–S fuzzy model is developed to approximate the stochas-
tic nonlinear dynamic system. For the convenience of design,
the triangle-type membership functions are used for Rules 1–
5, i.e., five triangle-type membership functions are employed
for a nonlinear function to construct the T–S fuzzy model. The
operating points for all states are all distributed from 0 to 105 .

We have constructed the T–S fuzzy model to approxi-
mate the nonlinear stochastic dynamic model and to obtain
the augmented system in (24). With the help of the fuzzy
approximation method and the LMI technique, we can eas-
ily solve the constrained optimization problem in (26) and
(27). Based on Proposition 2, by specifying design kinetic
parameters κ and decay rates γ within the allowable ranges
to solve the constrained optimization in (26), the minimum-
tracking error can be achieved with the optimal design param-
eters κo = (κ2 , κ3 , κ4) = (3814.9, 75.4, 10 910) and decay
rates γo = (γ1 , γ2 , γ3 , γ4) = (0.15, 0.0734, 0.3202, 0.4585).
The synthetic gene network is simulated with the designed pa-
rameter κo and decay rate γo accompanied by intrinsic parame-

ter fluctuations and bounded uncertain interactions in (34). For
the convenience of simulation, we consider the uncertain inter-
actions

l (x) =

⎡
⎢⎣

0 0 0
0.2 sin x1 0 0

0 0.4 cos x2 0
0 0 0.3 cos x3

⎤
⎥⎦

with unknown molecules ζ = [ζ1 , ζ2 , ζ3 ]
T and environmen-

tal disturbances v (t) = [10n1 , 100n2 , 10n3 , 100n4 ]
T , where

ζi, i= 1, 2, 3 are unit-step functions, and ni , i = 1, . . . , 4 are
independent Gaussian white noises with zero means and unit
variances. In order to demonstrate the robust optimal refer-
ence tracking for the synthetic gene network, the example using
Monte Carlo method with 20 rounds and with uncertain initial
values is presented in Fig. 3. The initial values x1 (0) − x4 (0)
are assumed normal distributed random variables with means
500, 25 000, 700, and 15 000 and standard deviations 100, 5000,
140, and 3000, respectively. We obviously find that the concen-
trations of the synthetic gene network can track the trajecto-
ries of the reference system in spite of uncertain initial values,
intrinsic parameter fluctuations, uncertain interactions, and ex-
ternal disturbances. From the simulation result, it is seen that
the designed synthetic gene network by the proposed method
has robust optimal reference-tracking ability and noise-filtering
ability to tolerate intrinsic parameter fluctuations and to attenu-
ate the external disturbances, respectively. Therefore, the robust
optimal reference-tracking design for synthetic gene networks
is an efficient method to properly engineer system parameters
of synthetic gene networks in the host cell, in spite of intrinsic
uncertainties and extrinsic disturbances.

Example 2: Suppose we want to synthesize a gene network
with negative-feedback loop shown in Fig. 4 [40], [41]. The
repressor protein LacI inhibits the transcription of the repressor
gene tetR, whose protein product in turn inhibits the expression
of the repressor gene cI. Finally, CI, the protein product of re-
pressor gene cI, inhibits lacI expression. The negative-feedback
loop leads to temporal oscillations in the concentration of each
of its components, which can be seen from a simple model of
transcriptional regulation. The concentrations of proteins TetR,
CI, and LacI, for convenience, are denoted by x1 , x2 , and x3 ,
respectively. The dynamic equations for the synthetic network
are given as follows:

ẋ1 = κ1H (x3) − γ1x1 + v1

ẋ2 = κ2H (x1) − γ2x2 + v2

ẋ3 = κ3H (x2) − γ3x3 + v3 (38)

where the vectors κ = [κ1 , κ2 , κ3 ]
T , and γ = [γ1 , γ2 , γ3 ]

T

contain the corresponding kinetic parameters and decay rates,
respectively. The vector v = [v1 , v2 , v3 ]

T denotes the environ-
mental disturbances on the host cell due to changing extracel-
lular environments, interactions with the cellular context, etc.
H (·) is a Hill function for repressors, which is characterized by
decreasing S-shaped curves and can be described as the form
H (x) = β/ (1 + (x/K))n with β = 1, n = 4, and K = 200.
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Fig. 4. Synthetic transcriptional cascade. TetR represses lacI, LacI represses
cI, and CI represses tetR. They can build an oscillatory network. In this cascade,
there exist uncertain interactions with unknown molecules (ζ1 , ζ2 , ζ3 , ζ4 ) that
intertwine with the synthetic gene network.

Suppose the kinetic parameters κ and decay rates γ suffer
from the parameter fluctuations with standard deviations and
bounded uncertain interactions l (x) in the host cell as follows:

Δκ = (Δκ1 ,Δκ2 ,Δκ3) = (10, 10, 10)

Δγ = (Δγ1 ,Δγ2 ,Δγ3) = (0.05, 0.05, 0.05)

‖l (x)‖ ≤ 0.5. (39)

Then, the synthetic gene network under intrinsic parameter
fluctuations, uncertain interactions with unknown molecules,
and environmental disturbances can be described in host cell as
follows:

dx = [f (x, κ, γ) + l (x) ζ + v] dt +
3∑

j=1

Mjgj (x, κ, γ)dWj .

(40)
The biological allowable ranges of kinetic parameters and

decay rates of the synthetic gene network are given by

κ1 ∈ [100, 500] , κ2 ∈ [100, 500] , κ3 ∈ [100, 500]

γ1 ∈ [0.1, 0.9] , γ2 ∈ [0.1, 0.9] , γ3 ∈ [0.1, 0.9] . (41)

The purpose is to design a robust synthetic gene network,
whose behaviors can track the following reference oscillation
system with the desired amplitude and period, as shown in Fig. 5:⎡
⎣ ẋr1

ẋr2
ẋr3

⎤
⎦ =

⎡
⎣ 0 0.42339 −0.48853
−0.7873 0 0.66617
0.68232 −0.50037 0

⎤
⎦
⎡
⎣xr1

xr2
xr3

⎤
⎦

+

⎡
⎣ 18.89

27.253
−45.943

⎤
⎦ (42)

or ẋr = Arxr + r.
Since the eigenvalues of Ar are all on the jω-axis, the expe-

dient design in (30) and (31) in Remark 5 must be employed to
treat the oscillatory gene network design problem. First of all,
we approximate the stochastic nonlinear system in (40) using
the T–S fuzzy model approach. For the convenience of design,
ten triangle-type membership functions are taken for Rules 1–
10 and the operating points for all states are all distributed from
0 to 1000. The augmented system combined the T–S fuzzy
model to approximate the synthetic gene network in (40) with

Fig. 5. Synthetic gene network is constructed by the minimum er-
ror tracking with optimal kinetic parameters κo = (κ1 , κ2 , κ3 ) =
(234.67, 439.38, 218.97), decay rates γo = (γ1 , γ2 , γ3 ) =
(0.44452, 0.88719, 0.47455), and λo = 0.088588 to meet the desired
behaviors of reference model. The robust optimal-tracking performance of
synthetic gene oscillator is confirmed with parameter fluctuations with standard
deviations as (Δκ1 , Δκ2 , Δκ3 ) = (10, 10, 10), (Δγ1 , Δγ2 , Δγ3 ) =
(0.05, 0.05, 0.05), uncertain interactions with unknown molecules
l(x)ζ = (0.5 sin x2 ζ1 , 0.1 cos x1 ζ2 , 0.2 sin x3 ζ3 + 0.3 sin x2 ζ4 )T , and
environmental disturbances v = (n1 , n2 , n3 )T , where ζ = [ζ1 , ζ2 , ζ3 , ζ4 ]T
are unit-step functions, and ni are standard zero-mean white noises. The
Monte Carlo simulation is given with 20 rounds and random initial conditions
to demonstrate the robust ability of optimal reference tracking. Unlike the
Example 1, the asymptotical tracking cannot be achieved due to changing
reference signals. As shown in the figures, the concentrations of the synthetic
gene oscillators in the host cell can track the behaviors of the reference
model in spite of intrinsic uncertainties, uncertain interactions, and extrinsic
disturbances.

the reference model in (42) is obtained as follows:

dx̄ =
10∑

i=1

hi(x̄)

⎡
⎣(Āi(κ, γ)x̄ + l̄(x̄)v̄

)
dt +

3∑
j=1

M̄j B̄ij x̄dWj

⎤
⎦

(43)
where Āi(κ, γ) and B̄ij are obtained by fuzzy approximating
method.

Because one half of eigenvalues of the augmented system
in (43) are on the jω-axis, the eigenvalue-shifted technique
in Remark 6 can be employed to treat the robust oscillation-
tracking design problem. The constrained optimization in (32)
is employed to solve the optimal-tracking design problem with
the allowable ranges of κ and γ in (41) and λ ∈ [0, 0.1].

With the help of LMI technique, the constrained optimiza-
tion problem in (32) can be solved easily. The simulation
using Monte Carlo method with 20 rounds and with uncer-
tain initial values is shown in Fig. 5, where the initial values
x1 (0) ∼ x3 (0) are assumed normal distributed random vari-
ables with means 280, 180, and 185 and standard deviations
28, 18, and 18.5, respectively. Moreover, a common positive-
definite symmetric matrix P for solving (30) and (31) is obtained
as shown at the bottom of the next page, with the optimal kinetic
parameters κo = (κ1 , κ2 , κ3) = (234.67, 439.38, 218.97), de-
cay rates γo = (γ1 , γ2 , γ3) = (0.44452, 0.88719, 0.47455),
and λo = 0.088588. Fig. 5 demonstrates the robust optimal-
tracking result for synthetic gene network by the designed ki-
netic parameter κo and decay rate γo with intrinsic parameter
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fluctuations in (39). For the convenience of simulation, we as-
sume the uncertain interactions

l (x) =

⎡
⎣ 0.5 sin x2 0 0 0

0 0.1 cos x1 0 0
0 0 0.2 sin x3 0.3 sin x2

⎤
⎦

with unknown molecules ζ = [ζ1 , ζ2 , ζ3 , ζ4 ]
T and environmen-

tal disturbances v (t) = [n1 , n2 , n3 ]
T , where ζi , i = 1, 2, 3, 4

are unit-step functions, and ni , i = 1, 2, 3 are independent Gaus-
sian white noises with zero means and unit variances.

From the simulation result shown in Fig. 5, we can ob-
serve that the designed synthetic gene network by the proposed
method has robust optimal reference-tracking ability and noise-
filtering ability to tolerate intrinsic parameter fluctuations and to
attenuate the uncertain interactions and external disturbances,
respectively. However, due to changing reference signal, the
asymptotical tracking cannot be achieved as Example 1. It is
observed that different initial values will cause different phases,
but the period is the same, despite intrinsic noises and extrinsic
disturbances. Therefore, the eigenvalue-shifted method is an ef-
ficient method to properly engineer system parameters of robust
synthetic gene oscillators in the host cell, in spite of intrinsic
uncertainties and extrinsic disturbances.

VI. DISCUSSION

Unlike the conventional regulation design of synthetic gene
networks to a desired steady state, the proposed robust optimal-
tracking design could make synthetic gene network tracking a
desired behavior like an oscillation or the other transient behav-
ior. In these robust gene network design examples, the kinetic
parameters κ and decay rates γ can be designed within the al-
lowable ranges in (9) to satisfy the four design specifications to
achieve the robust optimal tracking in vivo. As for the biological
implementation, we could refer to standard biological parts in
biological device datasheets to construct genetic circuits with
fine-tuned parameters κi and decay rates γi . This way, synthetic
biologists can increase efficiency of gene circuit design through
registries of biological parts and standard datasheets, which are
developed with proper packing and characterizing of ‘‘modu-
lar’’ biological activities so that these biological parts or devices
with some desired characteristics may be efficiently assembled
into the gene circuit [42].

Quantitative descriptions of devices in the form of standard-
ized, comprehensive datasheets are widely used in many engi-
neering disciplines. A datasheet is intended to allow an engineer
to quickly determine whether the behavior of a device will meet
the requirements of a system in which the device might be used
to meet the requirements of a system [42]. Such a determination

is based on a set of standard characteristics of the device behav-
ior, which are the product of engineering theory and experience.
In the datasheets, the characteristics typically reported are com-
mon across a wide range of device types, such as sensors, logic
elements, and actuators [43].

Recently, biological datasheets have been set as standards for
characterization, manufacture, and sharing of information about
modular biological devices for a more efficient, predictable, and
design-driven genetic engineering scheme [42], [43]. Because
datasheets of biological parts or devices are an embodiment
of engineering standard for synthetic biology, a good device
standard should define sufficient information about biological
parts or devices to allow the design of gene circuit systems with
optimal parameters. Datasheets have contained a formal set of
input–output transfer functions, dynamic behaviors, compati-
bility, requirements, and other details about a particular part or
device [42], [43]. Since the kinetic parameters κi are combina-
tions of transcription and translation rate, they could be mea-
sured from the input–output transfer functions and the dynamic
behaviors of biological parts or devices in biological device
datasheets. From properly characterized input–output transfer
functions and dynamic behaviors of parts or devices in bio-
logical device datasheets, an engineer can estimate the corre-
sponding parameters of biological parts or devices. When the
biological parts and devices in datasheets become more com-
plete in the future, we can rapidly select from a vast list the
parts that will meet the design kinetic parameters κi . There-
fore, we can ensure that devices selected from datasheets can
fit the optimal parameters and systems synthesized from them
can satisfy the requirements of design parameters for the robust
optimal-tracking gene networks.

Recently, the directed evolution methods are also used to
change the elasticity (kinetic property of κi) and will be useful
techniques for biochemical circuit design [44]–[46]. The ad-
vances of implementation techniques of kinetic parameter κi

and decay rate γi have made an engineering of synthetic gene
networks possible in the near future [47].

Because the kinetic parameters κi are a combination of tran-
scription rate, mRNA decay rate, and translation rate, there are
some variations or uncertainties on the kinetic parameters κi .
By the same way, the decay rates γi are full of some varia-
tions or uncertainties when the biologists rely on degradation
tags. These variations or uncertainties of the kinetic parameters
and decay rates are transformed to state-dependent noise terms∑m

i=1 Mig (x) dWi in (7). In our design method, two statis-
tics of disturbances v (t) can be unknown or uncertain. If the
standard deviations of the kinetic parameters and decay rates
to be tolerated are given in Mi , then the proposed robust syn-
thetic genetic network not only can optimally achieve the desired

P = 1000 ×

⎡
⎢⎢⎢⎢⎢⎣

15.819023 −0.291797 0.20718 −15.819023 0.291797 −0.20718
−0.291797 8.627381 0.104891 0.291797 −8.627381 −0.104891
0.20718 0.104891 11.565062 −0.20718 −0.104891 −11.565062

−15.819023 0.291797 −0.20718 288.210581 8.88916 −70.197667
0.291797 −8.627381 −0.104891 8.88916 155.948231 −31.430748
−0.20718 −0.104891 −11.565062 −70.197667 −31.430748 301.139633

⎤
⎥⎥⎥⎥⎥⎦
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trajectories of a reference model but can also tolerate the parame-
ter fluctuations, uncertain interactions with unknown molecules,
and environmental disturbances. How to select the proper kinetic
parameters and decay rates in synthetic gene networks to satisfy
the four design specifications is important for the robust opti-
mal reference tracking of the desired behaviors. Specification
iii) delivers the desired behaviors given in (10) to be tracked
by synthetic gene networks. Nevertheless, how to select kinetic
parameter κi and decay rate γi to achieve the reference model
tracking in a realistic gene network is due to nature selection
in the evolutionary response to the challenge of surviving in a
changing environment [48]. However, the kinetic parameters κi

and decay rates γi of the corresponding proteins for synthetic
gene networks are selected by designers to tolerate parameter
fluctuations, uncertain interactions with molecules, and environ-
mental disturbances on the host cell. However, these parameters
are hardly to keep invariant in vivo and environmental distur-
bances always exist on the host cell. Therefore, to remedy these
uncertainties and disturbances on the host cell, specifications ii)
and iv) deliver the standard deviations of parameter fluctuations
to be tolerated and the optimal error tracking to the guaranty of
robust tracking of synthetic gene networks. By using the earlier
design specifications to achieve the robust optimal-tracking de-
sign purpose, biologists can select suitable kinetic parameters
and decay rates to design a robust optimal reference tracking
of synthetic gene networks to meet these design specifications.
In the IC industry, due to high complexity and difficulty system
design companies (like Intel) and system implementation com-
panies [like Taiwan Semiconductor Manufacturing Company
(TSMC)] perform very large scale integration products by divi-
sion of labor. In the future, system designers should cooperate
with implementation companies to produce complex synthetic
gene networks. If this is the case, the development of systematic
design tools is an important topic for synthetic gene networks.
Therefore, the proposed robust optimal reference-tracking de-
sign method has potential applications to the synthetic gene
network design in the near future.

Because of intrinsic perturbations and extrinsic disturbances
on the host cell, the synthetic gene network engineered so far in
bacteria to behave in a particular way seems decay rapidly in its
behavior after a short time period [41], [49]. Therefore, how to
develop a robust-tracking design scheme is an important topic
for synthetic gene networks to work with desired reference be-
haviors in spite of intrinsic parameter fluctuations, uncertain in-
teractions with unknown molecules, and external environmental
disturbances on the host cell. The contributions of this research
are listed as follows: 1) We propose four design specifications
for engineering synthetic gene networks to guarantee the ro-
bust optimal reference-tracking design purpose. 2) The T–S
fuzzy model and the LMI technique are developed to simplify
the design procedure of the robust optimal tracking of syn-
thetic gene networks via the help of LMI toolbox in MATLAB.
3) In order to avoid the design difficulty of solving LMIs due to
tracking desired oscillation systems, whose eigenvalues are all
on jω−axis, an expedient eigenvalues-shifted method is also
proposed to improve the design procedure for synthetic genetic
oscillators. Two in silico examples are provided to illustrate the
design procedure, in which the four design specifications are

guaranteed for robust optimal-tracking design of synthetic gene
networks. These design results can be confirmed through Monte
Carlo simulation and shown in Figs. 3 and 5.

VII. CONCLUSION

We have presented a stochastic model to mimic the dynam-
ical properties of synthetic gene networks in the host cell with
parameter uncertainties, uncertain interactions with unknown
molecules, and external disturbances. Then, four design spec-
ifications are introduced to guarantee that synthetic gene net-
works could optimally track the reference behaviors under in-
trinsic parameter fluctuations, uncertain interactions with un-
known molecules in the cellular context, and external distur-
bances on the host cell from the robust optimal-tracking points
of view. Finally, based on a nonlinear stochastic system, a sys-
tematic design method is proposed for synthetic gene networks
to meet these design specifications to achieve robust optimal
tracking of the desired reference behaviors in spite of intrin-
sic parameter fluctuations, uncertain interactions with unknown
molecules, and extrinsic disturbances. To avoid solving non-
linear stochastic optimal reference-tracking design problem of
robust synthetic gene networks directly, a fuzzy design tech-
nique is employed to approximate a nonlinear stochastic gene
network to simplify the design procedure. Then, the robust opti-
mal reference-tracking synthetic gene network design problem
could be solved efficiently by a LMIs technique via LMI toolbox
in MATLAB. The proposed design procedure can guarantee the
synthetic gene network to satisfy the four design specifications
so that the engineered gene network can achieve the robust op-
timal reference tracking in spite of intrinsic uncertainties and
extrinsic disturbances on the host cell. An eigenvalue-shifted
design method is also proposed as an expedient scheme to im-
prove the optimal-tracking design procedure of synthetic gene
oscillators. Therefore, the proposed systematic design method
for the robust optimal reference tracking has much potential
to robust-tracking design in the nascent field of synthetic gene
networks in the future.

APPENDIX A

PROOF OF PROPOSITION 1

Let us denote a Lyapunov energy function V (x̄) > 0 for
x̄ �= 0 with V (0) = 0; then, (16) is equivalent to the following
problem:

J(κ, γ) = EV (x̄(0)) − EV (x̄(tf ))

+ E

∫ tf

0

(
x̄T Q̄x̄ +

dV (x̄)
dt

)
dt

= EV (x̄(0)) − EV (x̄(tf )) + E

∫ tf

0

(
x̄T Q̄x̄

+
(

∂V (x̄)
∂x̄

)T

f̄(x̄, κ, γ) +
(

∂V (x̄)
∂x̄

)T

l̄(x̄)v̄

+
1
2

m∑
j=1

ḡT
j (x̄)M̄T

j

∂2V (x̄)
∂x̄2 M̄j ḡj (x̄)

⎞
⎠ dt.
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The aforementioned equality is obtained by the Ito formula
[8], [9].

By the fact aT b + bT a ≤ 1
2 aT a + 1

2 bT b for any vector a and
b, and l̄(x̄)l̄(x̄)T ≤ S [13], we obtain(

∂V (x̄)
∂x̄

)T

l̄ (x̄) v̄ ≤ 1
4

(
∂V (x̄)

∂x̄

)T

l̄ (x̄) l̄T (x̄)
(

∂V (x̄)
∂x̄

)

+ v̄T v̄

≤ 1
4

(
∂V (x̄)

∂x̄

)T

S

(
∂V (x̄)

∂x̄

)
+ v̄T v̄

and then

J(κ, γ) ≤ EV (x̄(0)) − EV (x̄(tf )) + E

∫ tf

0

[
x̄T Q̄x̄

+
(

∂V (x̄)
∂x̄

)T

f̄(x̄, κ, γ) +
1
4

(
∂V (x̄)

∂x̄

)T

S

(
∂V (x̄)

∂x̄

)

+v̄T v̄ +
1
2

m∑
j=1

gT
j (x̄)M̄T

j

∂2V (x̄)
∂ x̄2 M̄j gj (x̄)

⎤
⎦ dt.

By the inequalities in (18), we get

J (κ, γ) ≤ EV (x̄(0)) − EV (x̄(tf )) + E

∫ tf

0
v̄T v̄dt

≤ EV (x̄ (0)) + E

∫ tf

0
v̄T v̄dt.

In other words, under the inequality constraint in (18),
EV (x̄(0)) + E

∫ tf

0 v̄T v̄dt is the upper bound of J(κ, γ). Then,
the suboptimal-tracking design problem becomes how to mini-
mize its upper bound subject to (18), i.e.,

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

J (κ, γ) ≤ min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

EV (x̄ (0)) + E

∫ tf

0
v̄T v̄dt

subject to (18).
Since v̄ is independent on the choice of the kinetic parameters

κ and decay rates γ, the suboptimal-tracking problem becomes
how to solve the following constrained optimization problem:

min EV (x̄ (0))

subject to (18).

APPENDIX B

PROOF OF PROPOSITION 2

As in the proof of Proposition 1, we choose a Lyapunov
V (x̄) = x̄T P x̄ for a positive symmetric matrix P > 0

J(κ, γ) = E

∫ tf

0
x̄T Q̄x̄dt = E

{
x̄T (0)P x̄(0) − x̄T (tf )P x̄(tf )

+
∫ tf

0

(
x̄T Q̄x̄ +

dx̄T P x̄

dt

)}
dt. (B1)

By the Ito formula [50] and E(dWi/dt) = 0, we have

J(κ, γ) = E

{
x̄T (0)P x̄(0) − x̄T (tf )P x̄(tf ) +

∫ tf

0

L∑
i=1

hi(x)

×
[
x̄T Q̄x̄ +

(
Āi(κ, γ)x̄ + l̄(x̄)v̄

)T
P x̄

+ x̄T P
(
Āi(κ, γ)x̄ + l̄(x̄)v̄

)

+
m∑

j=1

x̄T B̄T
ij M̄

T
j PM̄j B̄ij x̄

⎤
⎦ dt

⎫⎬
⎭

= E

{
x̄T (0)P x̄(0) − x̄T (tf )P x̄(tf )

+
∫ tf

0

L∑
i=1

hi(x)

[
x̄T Q̄x̄ + x̄T

(
ĀT

i (κ, γ) P + PĀi (κ, γ)

+ Q̄)x̄ + v̄T l̄T (x̄)P x̄ + x̄T P l̄(x̄)v̄

+
m∑

j=1

x̄T B̄T
ij M̄

T
j PM̄j B̄ij x̄

⎤
⎦ dt

⎫⎬
⎭ . (B2)

By the fact

x̄T P l̄(x̄)v̄ + v̄T l̄T (x̄)P x̄ ≤ x̄T P l̄(x̄)l̄T (x̄)P x̄ + v̄T v̄

≤ x̄T PSP x̄ + v̄T v̄

[13], then

J(κ, γ) ≤ E

{
x̄T (0)P x̄(0) − x̄T (tf )P x̄(tf )

+
∫ tf

0

L∑
i=1

hi(x)

[
x̄T

(
ĀT

i (κ, γ)P + PĀi(κ, γ)

+Q̄ + PSP +
m∑

j=1

B̄
T
ij M̄T

j PM̄j B̄ij

⎞
⎠ x̄ + v̄T v̄

⎤
⎦ dt

⎫⎬
⎭ .

If the inequalities

ĀT
i (κ, γ)P + PĀi(κ, γ) + Q̄ + PSP

+
m∑

j=1

B̄T
ij M̄

T
j PM̄j B̄ij < 0 (B3)

hold, then we obtain

J(κ, γ) ≤ E

{
x̄T (0)P x̄(0) − x̄T (tf )P x̄(tf ) +

∫ tf

0
v̄T v̄dt

}

≤ E

{
x̄T (0)P x̄(0) +

∫ tf

0
v̄T v̄dt

}

i.e., if the inequalities in (B3) hold, then
E{x̄T (0)P x̄(0) +

∫ tf

0 v̄T v̄dt} is the upper bound of J(κ, γ).
Since v̄ is independent on the choice of kinetic parameters κ

and decay rates γ, the suboptimal-tracking problem is equivalent
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to

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

E
[
x̄T (0) P x̄ (0)

]
= min

κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

TrPR0

subject to (B3), where R0 = E
[
x̄ (0) x̄T (0)

]
.

By the Schur complement [13], the inequalities in (B3) are
equivalent to the following LMIs:⎡
⎢⎣

ĀT
i (κ, γ) P + PĀi (κ, γ) + Q̄

+
m∑

j=1
B̄T

ij M̄
T
j PM̄j B̄ij

PS

SP −S

⎤
⎥⎦ < 0, i = 1, . . . , L

(B4)
Therefore, the suboptimal tracking is equivalent to solving

the following constrained optimization-tracking problem:

min
κ∈[κ,κ̄ ]
γ∈[γ ,γ̄ ]

TrPR0

subject to P > 0 and LMIs in (B4).
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