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Recently noise has been shown to be useful in enhancing neuron sen-
sitivity by stochastic resonance. In this study, in order to measure the
noise-enhancing factor (NEF), a nonlinear stochastic model is introduced
for the Hodgkin-Huxley (HH) neuron system with synaptic noise input
stimulation and channel noises in the sodium and potassium channels.
The enhancing factor of the HH neuron system is measured from the point
of view of the noise-exploiting level of nonlinear stochastic H∞ signal
processing. Since the nonlinear stochastic-enhancing measure problem
of HH neuron systems requires a solution for the difficulty presented by
the Hamilton Jacobi inequality (HJI), a fuzzy interpolation of locally lin-
earized systems is employed to simplify the nonlinear noise-enhancing
problems by solving only a set of linear matrix inequalities. The NEF of
the HH neuron system is found to be related to the locations of eigenval-
ues of linearized HH neuron systems and can be estimated through the
H∞ signal processing method. Based on a stochastic fuzzy linearized HH
neuron system, we found that channel noises are enhanced by the active
eigenvalues of ionic channels while synaptic noises are attenuated by the
passive eigenvalues of synaptic process.

1 Introduction

The nervous system is constituted of a large number of highly intercon-
nected neurons, which represent the basic biological computational units
(Kandel, Schwartz, & Jessell, 2000). Neurons receive electrical input signals
from other nerve cells via threadlike extensions of cell membranes called
dendrites. Depending on the spatiotemporal distribution of input currents
that depolarize membrane voltage, firing threshold (sufficient membrane
voltage for depolarization) can be reached, thus triggering an action po-
tential. However, neurons operating in biological systems are subject to
noises, which cause various alterations in neural coding (Douglass, Wilkens,
Pantazelou, & Moss, 1993; Levin & Miller, 1996; Segundo, Martinez,
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Pakdaman, Stiber, & Vibert, 1994). As noises can directly affect the reli-
ability of neurons, researchers have taken great interest in how neurons
disregard or even incorporate their intrinsic noises so as to process infor-
mation reliably. A prerequisite to understanding the mechanisms underly-
ing such noise-induced changes is the characterization of how noise alone
affects neuronal behavior. Further incentive to analyze the response of neu-
rons to noise-like stimuli comes from the fact that such signals well mimic
the actual inputs some neurons receive in vivo (Juusola & French, 1997;
Mainen & Sejnowski, 1995). Finally system-identification studies through
white noise analysis have been another application of noiselike inputs in
neuroscience (Marmarelis & Marmarelis, 1978; Sakai, 1992). To be more
precise, studies of this kind estimate the Wiener kernels from the spike
train evoked by noiselike signals (Boskov, Jocic, Jovanovic, Ljubisavljevic,
& Anastasijevic, 1994a, 1994b; Bryant & Segundo, 1976; Buno, Bustamante,
& Fuentes, 1984; Bustamante & Buno, 1992; French, 1984; French & Wong,
1977; Korenberg, French, & Voo, 1988; Lewis, Henry, & Yamada, 2000). The
combined influence of noise and constant stimulations on Hodgkin-Huxley
(HH) neuron systems has been studied through time and frequency analysis
of membrane-potential dynamics (Kosmidis & Pakdaman, 2006; Takahata,
Tanabe, & Pakdaman, 2002; Tateno & Pakdaman, 2004).

Actually, the noises in neurons come not only from input stimulation
but also from the activation and inactivation of sodium and potassium cur-
rents through nanoscale sodium and potassium ionic channels, respectively.
The combined action of synaptic and channel noises has been discussed
by Schmid, Goychuk, Hanggi, Zeng, and Jung (2004) and Zeng and Jung
(2004). Therefore, in this study, a more general nonlinear stochastic model
is introduced for stochastic HH neuron systems with noises in input stim-
ulation and activation and inactivation of sodium and potassium channels
(i.e., both synaptic noises and channel noises are considered in a stochastic
HH neuron model). Recently, based on stochastic HH neuron model, it has
been found that noises are enhanced by stochastic resonance via intense nu-
merical simulations (Butson & Clark, 2008; Douglass et al., 1993; Fox, 1997;
Kandel et al., 2000; Levin & Miller, 1996; Saarinen, Linne, & Yli-Harja, 2006;
Schneidman, Freedman, & Segev, 1998; Segundo et al., 1994; Stein, Gossen,
& Jones, 2005; White, Rubinstein, & Kay, 2000). Currently, the enhancing
mechanism of noises in HH neuron systems still needs to be revealed, es-
pecially from the point of view of nonlinear stochastic signal processes.
In this situation, based on nonlinear stochastic H∞-enhancing theory, the
noise-enhancing factor (NEF) of HH neuron systems is measured by the
noise-enhancing level from the perspective of nonlinear stochastic systems.

Unlike previous methods, which are based on the linearization method
and Wiener kernels (Boskov et al., 1994a, 1994b; Bryant & Segundo, 1976;
Buno, Bustamante, & Fuentes, 1984; Bustamante & Buno, 1992; French, 1984;
French & Wong, 1977; Korenberg et al., 1988; Lewis et al., 2000; Marmarelis
& Marmarelis, 1978; Sakai, 1992), NEF is discussed from the perspective of
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nonlinear stochastic process. By solving a constrained optimization prob-
lem subject to an HJI, we can measure NEF. However, it is still very difficult
to solve HJI analytically or numerically for noise-enhancing measure prob-
lems in stochastic HH neuron systems. In recent years, Takagi-Sugeno (TS)
fuzzy systems have been used to efficiently interpolate several local linear
systems via fuzzy bases to approximate nonlinear systems (Chen, Tsai, &
Chen, 2003; Chen, Tseng, & Uang, 1999; Passino & Yurkovich, 1998). There-
fore, a T-S fuzzy stochastic system is employed to approximate a nonlinear
stochastic HH neuron system by interpolating several linearized HH neu-
ron systems at different operation points of the nonlinear stochastic HH
neuron system. Then the problem of measuring the NEF of HH neuron
systems can be simplified by solving a constrained optimization problem
subject to a set of LMIs developed for measuring the NEF of a set of fuzzy lo-
cal stochastic linear HH neuron systems—that is, nonlinear HJI constraints
are replaced by a set of LMI constraints. These LMIs can be easily solved
by an LMI toolbox in Matlab to simplify the procedure of noise-enhancing
analysis and the measurement of nonlinear stochastic HH neuron systems.
Furthermore, based on the fuzzy approximation method, the analysis of the
NEF in nonlinear stochastic HH neuron systems can be investigated from
the viewpoint of a set of linear stochastic HH neuron systems. We found
that if the eigenvalues of these fuzzy local linear systems are on the far
left-hand side of the complex domain (i.e., with more negative real parts
or more stability), then the nonlinear HH neuron network attenuates (or
filters) more noise. If some eigenvalues are near or on the imaginary axis
or even on the right-hand side of complex domain (i.e., with zero or posi-
tive real parts), the noises will be resonated or even enhanced by the HH
neuron system. As for the fuzzy local linear systems, we found that the
eigenvalues of the synaptic process are all on the left-hand-side complex
domain. Therefore, the synaptic noises are filtered (attenuated) by the HH
neuron system. We also found that many eigenvalues of ionic channels are
near or on the imaginary axis. This implies that the HH neuron system has
an inherent resonant mechanism that enhances channel noises.

This study makes the following contributions. First, this study consid-
ers not only the synaptic noises at input stimulation but also the channel
noises at sodium and potassium ionic channels in a nonlinear stochastic
HH neuron system. Second, nonlinear H∞-filtering or enhancing theory is
employed to analyze the NEF of a nonlinear stochastic HH neuron system.
Third, the T-S fuzzy model is employed to simplify the noise-enhancing
problem of nonlinear stochastic HH neuron systems by substituting a noise-
enhancing problem of a set of interpolated linear stochastic neuron systems
that can be easily solved by LMI toolbox in Matlab. Finally we found that
channel noises are always enhanced when synaptic noises are filtered. Noise
enhancement is performed by the active modes of two major processes:
sodium activation and potassium activation processes. As constant current
level increases, noise enhancement is partly performed by the active modes
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of sodium inactivation. Channel noises can be investigated by the locations
of the eigenvalues of fuzzy local neuron systems. In general, noise enhance-
ment is performed by the active modes of ionic channels on the jω-axis, and
the noise filtering is performed by the passive modes of the synaptic pro-
cess on the left-hand-side complex domain. Unlike conventional methods,
which employ Wiener kernel techniques via a linearization method (Dayan
& Abbott, 2001; Marmarelis & Marmarelis, 1978), the proposed method can
analyze the NEF of stochastic HH neuron systems by the passive or active
modes of corresponding state variables from the perspective of nonlinear
stochastic systems.

2 Methods

This section presents stochastic HH neuron systems with synaptic noises
in input stimulation and channel noises in activation and inactivation of
sodium and potassium channels. Then the enhancing factor of a stochastic
HH neuron system is measured by the noise-enhancing level from the
perspective of nonlinear stochastic H∞ signal processing. Finally, T-S fuzzy
techniques are employed to simplify the measurement procedure of the
NEF of nonlinear stochastic HH neuron systems. These steps are discussed
in the following sections in detail.

2.1 Stochastic HH Neuron Systems. The dynamics of a stochastic
model corrupted by both synaptic noise and channel noises is described
by the following equations (Hodgkin & Huxley, 1952):

Cm
dV(t)

dt
= gNa m(t)3h(t)(VNa − V(t)) + gK n(t)4(VK − V(t))

+ gL (VL − V(t)) + I + w1(t)

dm(t)
dt

=αm(V(t))(1 − m(t)) − βm(V(t))m(t) + w2(t) (2.1)

dh(t)
dt

=αh(V(t))(1 − h(t)) − βh(V)h(t) + w3(t)

dn(t)
dt

=αn(V(t))(1 − n(t)) − βn(V)n(t) + w4(t),

where the variables V(t), m(t), h(t), and n(t) are the membrane poten-
tial, the activation and inactivation of the sodium current, and the ac-
tivation of the potassium current, respectively. Cm is the membrane
capacitance. VNa , VK , and VL are, respectively, the reversal potentials of
the sodium, potassium, and leak currents, and gNa , gK , and gL are the
corresponding maximal conductances. I is the constant stimulation. w1(t)
denotes the stimulation noises, that is, synaptic noises. wi (t), i = 2, 3, 4,
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denote the stochastic noises of activation and inactivation in sodium
and potassium ion channels, that is, channel noises. Suppose synaptic
noise with 〈w1(t)〉 =: E(w1(t)) = 0, 〈w1(s)w1(t)〉 =: E(w1(s)w1(t)) = σ 2

1 δ(t −
s), where δ(t) is the Dirac impulse function. As did Fox and Lu (1994) and
Zeng and Jung (2004), we define that channel noises w2, w3, and w4 are zero-
mean white noises with 〈w2(t)w2(t′)〉 = (2/NNa ){[αm(1 − m) + βmm]/2}δ(t −
t′), 〈w3(t)w3(t′)〉 = (2/NNa ){[αh(1 − h) + βhh]/2}δ(t − t′) and 〈w4(t)w4(t′)〉 =
(2/NK ){[αn(1 − n) + βnn]/2}δ(t − t′), respectively. Here NNa and NK denote
the total numbers of sodium and potassium channels. The number of
sodium ion channels NNa is kept proportional, NNa = 60(NK /18), to the
number of potassium ion channels (Schmid et al., 2004). In the numerical
simulations, we also set NK = 10. In this study, all noise variances are not
necessarily known or uncertain. In addition, the auxiliary functions αm, αh ,
αn, βm, βh , and βn are (Hodgkin & Huxley, 1952)

αm(V) = 2.5 − 0.1V(t)
e (2.5−0.1V(t)) − 1

, βm(V) = 4e−V(t)/18

αn(V) = 0.1 − 0.01V(t)
e (1−0.1V(t)) − 1

, βn(V) = 0.125e−V(t)/80 (2.2)

αh(V) = 0.07e−V(t)/20, βh(V) = 1
e (3−0.1V(t)) + 1

.

The parameter values used in this study are Cm = 1.0μF/cm2, gNa =
120 mS/cm2, gK = 36 mS/cm2, gL = 0.3 mS/cm2, VNa = 115 mV, VK =
−12 mV, and VL = 10.613 mV (Takahata et al., 2002). The parameter values
were set so that the resting potential was 0.003487 mV for I = 0 (μA/cm2).
In the following simulation example, we use different values of the current
I so that the resting potential will change with different current I. Suppose
the equilibrium points of interest in an HH neuron system without noises
are (V∗, m∗, h∗, n∗). Let us denote

X(t) =

⎡
⎢⎢⎢⎣

V(t)

m(t)

h(t)

n(t)

⎤
⎥⎥⎥⎦ , W(t) =

⎡
⎢⎢⎢⎣

w1(t)

w2(t)

w3(t)

w4(t)

⎤
⎥⎥⎥⎦ , X∗ =

⎡
⎢⎢⎢⎣

V∗

m∗

h∗

n∗

⎤
⎥⎥⎥⎦ . (2.3)

Then the nonlinear stochastic HH equation can be represented by the fol-
lowing nonlinear stochastic system,

Ẋ(t) = F (X(t)) + HW(t), (2.4)
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where H = I =
⎡
⎣ 1 0 · · · 0

0 1
. . .

......
. . . 1 0

0 · · · 0 1

⎤
⎦ when both synaptic noise and channel

noises appear, H = H1 =

⎡
⎢⎣

1 0 · · · 0

0 0
. . .

......
. . . 0 0

0 · · · 0 0

⎤
⎥⎦ when only synaptic noises appear,

and H = H2 =

⎡
⎢⎣

0 0 · · · 0

0 1
. . .

......
. . . 1 0

0 · · · 0 1

⎤
⎥⎦ when only channel noises appear.

For convenience in the analysis of noise filtering and enhancing, the origin
of the stochastic HH system in equation 2.4 should be shifted to the equi-
librium point X∗, that is, X(t) = X∗ + x(t). Then we get the shifted system
as follows:

ẋ(t) = F (x(t) + X∗) + HW(t). (2.5)

In this situation, the equilibrium point of interest in the stochastic HH
neuron system in equation 2.5 is at the origin. If x = 0, then X = X∗ =
(V∗, m∗, h∗, n∗)T, converging to the equilibrium point in the noise-free case.

In numerical simulations, the Box-Muller algorithm is also needed for
generating channel noises (Fox & Lu, 1994). Noises are generated at each
integration step. In order to guarantee that the variables m, h, and n are al-
ways in the range (0,1), one must redo the integration step until the updated
values of the variables m, h, and n all stay within (0,1) in the simulation pro-
cess. The numerical integration of stochastic differential equation 2.1 was
performed by the Euler method with the time step 0.01 ms.

2.2 Noise Enhancing of Stochastic HH Neuron Systems. Let us denote
the noise-enhancing level ρ of the stochastic neuron system in equation 2.5
as follows:

E
∫ ∞

0 v2(t) dt

E
∫ ∞

0 WT (t)W(t) dt
< ρ2 or

E
∫ ∞

0
v2(t) dt < ρ2E

∫ ∞

0
WT (t)W(t) dt,

(2.6)

for all possible stochastic noises with finite variances, where v(t) = V(t) −
V∗. The physical meaning of the inequality in equation 2.6 is that the effect
of all possible stochastic noises on the membrane potential from the equi-
librium V∗ is less than ρ2 from the point of view of mean energy, that is, the
gain from W(t) to v(t) is less than ρ from the perspective of mean energy.
The ratio in equation 2.6 can also be considered to be the signal-to-noise
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ratio from the point of view of mean energy (Butson & Clark, 2008; Stein
et al., 2005; White et al., 2000), that is, the signal-to-noise ratio is less than ρ2.

Remark 1. (1) If only the effect of synaptic noise w1(t) is considered
(Takahata et al., 2002), then H = H1 in equations 2.4 and 2.5. If only the
effect of three channel noises is considered, then H = H2 in equations 2.4
and 2.5. If the effects of both synaptic noise and channel noises are consid-
ered, then H = I . (2) In order to avoid a divergent integral in equation 2.6,
the inequality could be changed to limT→∞ 1

T E
∫ T

0 v2(t) dt/ limT→∞ 1
T E

∫ T
0

WT(t)W(t) dt < ρ2. Since both the numerator and denominator are divided
by T and can be canceled by each other, this new definition is equivalent to
equation 2.6 and does not affect the derived results in the sequel. Actually,
it can be considered as the ratio of variances of v(t) and W(t).

Remark 2. If the initial condition v(0) is not zero, then the inequality in
equation 2.6 should be modified as follows (Chen, Tseng, & Uang, 2000;
Zhang, Chen, & Tseng, 2005),

E
∫ ∞

0
v2(t) dt < E�(v(0)) + ρ2E

∫ ∞

0
WT (t)W(t) dt, (2.7)

for some positive function �(·), that is, the effect of the energy of the initial
v(0) should also be considered in the above inequality. For convenience, the
above inequality is transformed to the following equivalent inequality by
v(t) = [1 0 0 0]T x(t):

E
∫ ∞

0
xT (t)Qx(t) dt < E�(x(0)) + ρ2E

∫ ∞

0
WT (t)W(t) dt (2.8)

where Q =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦ [ 1 0 0 0 ] =

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

Remark 3. If we want to discuss the effect of noises W(t) on x(t) (i.e., not
only on v(t) but also on the other state variables of the neuron system), then
we could let Q = I in equation 2.8.

Based on the analysis above, we get the following result:
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Proposition 1. For the stochastic HH neuron systems in equation 2.5, if the
following HJI has a positive solution �(x) > 0,

(
∂�(x(t))

∂x

)T

F (x(t) + X∗) + x(t)T Qx(t)

+ 1
4ρ2

(
∂�(x(t))

∂x

)T

H HT ∂�(x(t))
∂x

< 0, (2.9)

then the noise-enhancing level ρ in equations 2.6, 2.7, and 2.8 for stochastic HH
neuron systems in equation 2.4 is achieved.

Proof: See appendix A.

From equation 2.6, it is evident that ρ is the upper bound of noise en-
hancing. The NEF ρ0 is defined as follows:

ρ0 = min
�(x)

ρ

subject to equation 2.9, (2.10)

that is, the NEF is defined as the minimum noise-enhancing level of the
stochastic neuron system. This is the so-called H∞ noise-filtering or noise-
enhancing problem (Chen et al., 2003; Zhang et al., 2005). In general, if
ρ0 < 1, we call it noise filtering (i.e., the noises are attenuated by the HH
neuron system). If ρ0 ≥ 1, we call it noise enhancing by the HH neuron
system. Therefore, the measurement of the NEF for the stochastic neuron
system solves the HJI-constrained optimization problem in equation 2.10.

Remark 4. ρ in equation 2.6 can be considered as the upper bound of NEF
ρ0, which is defined as ρ2

0 = maxW(t)∈L2 E
∫ ∞

0 v2(t) dt/E
∫ ∞

0 WT (t)W(t) dt,
where L2 denotes the set of all possible zero-mean white noises with finite
variances—the worst-case signal-to-noise ratio of the neuron system for
all possible stochastic noises from the mean energy point of view. From the
system point of view, ρ0 can be considered as amplification or attenuation of
stochastic neuron system from W(t) to v(t) (Boyd, 1994). In the linear system
case, the filtering ability ρ0 is equivalent to the largest peak of transfer func-
tion from noise input W(t) to output v(t), which is related to the eigenvalues
of the system matrix A of the linear system (Boyd, 1994). Obviously our
method is an extension of linear filtering theory to nonlinear filtering the-
ory. Therefore, the minimization of the noise-enhancing and noise-filtering
level ρ2 in equation 2.10 is to minimize its upper bound ρ2 to achieve
the NEF ρ2

0 from the suboptimal perspective. That is, we do not solve ρ0

from the optimization problem maxW(t)∈L2 E
∫ ∞

0 v2(t) dt/E
∫ ∞

0 WT (t)W(t) dt
directly but solve this problem from equations 2.6 and 2.10 indirectly from
the suboptimal perspective instead.
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2.3 Fuzzy Interpolation Method for Measurement of NEF. In general,
it is very difficult to solve nonlinear HJI for the noise-enhancing problem in
equations 2.9 and 2.10. In order to simplify the noise-enhancing problem,
T-S fuzzy model (Chen et al., 1999, 2000; Hsiao, Chen, Liang, Xu, & Chiang,
2005; Hsiao, Hwang, Chen, & Tsai, 2005; Lian, Chiu, Chiang, & Liu, 2001a,
2001b; Takagi & Sugeno, 1985) is employed to approximate the nonlinear
stochastic HH neuron system in equation 2.5 by interpolating several lin-
earized HH neuron systems at different operation sets so that the nonlinear
noise-enhancing problem can be transformed into a fuzzy noise-enhancing
problem (Chen et al., 2003). Using such a fuzzy interpolation approach,
the HJI in equations 2.9 and 2.10 can be replaced by a set of LMIs. In this
situation, the measurement problem of the nonlinear NEF of stochastic HH
neuron systems can be solved easily by using the fuzzy noise-filtering or
-enhancing method.

The T-S fuzzy model is a piecewise interpolation of several locally lin-
earized models through membership functions at different operation sets.
The fuzzy model is described by fuzzy if-then rules. The ith rule of the fuzzy
model for nonlinear stochastic neuron systems in equation 2.5 is given in
the following form (Chen et al., 2003, 1999; Passino & Yurkovich, 1998):

Rule i : If x1(t) is Fi1, x2(t) is Fi2, x3(t) is Fi3, x4(t) is Fi4

then ẋ(t) = Ai x(t) + HW(t), i = 1, . . . , L , (2.11)

where Fi, j are the fuzzy sets, Ai are the known constant matrices, and L is the
number of if-then rules. The fuzzy system in equation 2.11 is inferred as fol-
lows (Chen et al., 2003, 1999; Passino & Yurkovich, 1998; Zhang et al., 2005):

ẋ(t) =
∑L

i=1 μi (x)[Ai x(t) + HW(t)]∑L
k=1 μk(x)

=
L∑

i=1

hi (x)[Ai x(t) + HW(t)], (2.12)

where μi (x) = ∏4
j=1 Fi j (xj (t)), hi (x) = μi (x(t))/

∑L
k=1 μk(x(t)), and Fi j (xj (t))

are the grade membership function of xj (t) in the fuzzy set Fi j . Examples of
the two fuzzy membership functions in each state variable xj (t) and the case
of membership functions for 16 fuzzy rules are shown in Figure 1, which
will be discussed in the simulation example in the sequel.

When we assume μi (x) > 0, then the bases of fuzzy interpolations satisfy
the following constraints:

hi (x) > 0,

L∑
i=1

hi (x) = 1. (2.13)
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Figure 1: (A) Fuzzy membership functions Fi j (x j ) of the fuzzy sets Fi j in the
example. (B) The fuzzy membership functions for 16 fuzzy rules in equation 2.19.

The T-S fuzzy model in equation 2.12 interpolates L local linear stochastic
neuron systems to approximate the nonlinear stochastic HH neuron system
in equation 2.5 via fuzzy basis functions hi (x) at different operation sets. We
could specify parameter Ai easily so that

∑L
i=1 hi (x)Ai x(t) in equation 2.12

can approximate F(x) in equation 2.5 using the fuzzy identification method
(Takagi & Sugeno, 1985), that is,

ẋ(t) = F (x(t) + X∗) + HW

=
L∑

i=1

hi (x)[Ai x(t) + HW(t)] + 
 f (x), (2.14)
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where 
 f (x) = F (x(t) + x∗) − ∑L
i=1 hi (x)Ai x(t) denotes the fuzzy approx-

imation error. Let us suppose the approximation error is bounded
by

‖
 f (x)‖ ≤ α‖x(t)‖, (2.15)

where ‖x(t)‖ =:
√

x2
1 (t) + x2

2 (t) + x2
3 (t) + x2

4 (t), that is, the approximation er-
ror 
f(x) is bound by a linear sector [−αx(t), αx(t)] (Cao, Rees, & Feng,
2001). In general, if the number of membership functions becomes larger,
the approximation error will become smaller, that is, α in equation 2.15
will become smaller. However, it will lead to a complex fuzzy system and
increase the computation complexity. There is a trade-off between compu-
tation complexity and approximation error.

After the nonlinear stochastic HH neuron system in equation 2.5 is ap-
proximated by the T-S fuzzy system in equation 2.14, the nonlinear noise-
enhancing (noise-filtering) problem in equations 2.5 and 2.8 can be replaced
by solving the following fuzzy noise-enhancing (noise-filtering) problem for
equations 2.14 and 2.6.

Proposition 2. For the fuzzy neuron system, equation 2.14, if the following
inequalities have a solution P > 0 and γ ≥ 0 for a prescribed ρ,

P Ai + AT
i P + Q + P

(
1
γ 2

I + H HT

ρ2

)
P

+ γ 2α2 I < 0, i = 1, . . . , L , (2.16)

then the noise-enhancing level ρ in equation 2.6 is achieved.

Proof: See appendix B.

By fuzzy approximation, obviously, HJI in equation 2.9 can be approximated
by a set of algebraic inequalities in equation 2.16. Since ρ2 is the upper bound
of the noise-enhancing (noise-filtering) level in equation 2.6, the NEF still
has to minimize ρ2 as in equation 2.10, as follows:

ρ2
0 = min

P>0,γ≥0
ρ2

subject to equation 2.16,
(2.17)

that is, the measurement problem of NEF in equation 2.10 can be replaced
by a measurement problem of NEF equivalent to equation 2.17.

By the Schur complement (Boyd, 1994), the constrained optimization
problem for measuring the NEF in equation 2.17 is equivalent to the
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following LMI-constrained optimization problem:

ρ2
0 = min

P>0,γ≥0
ρ2, (2.18)

subject to

⎡
⎢⎣

P Ai + AT
i P + Q + γ 2α2 I P H P

HT P −ρ2 I 0

P 0 −γ 2 I

⎤
⎥⎦ < 0.

i = 1, . . . , L

Remark 5. (1) The fuzzy basis function hi (x) in equations 2.12 and 2.13 for
fuzzy interpolation can be replaced by other interpolation functions, for
example, cubic spline functions. (2) By fuzzy approximation, the nonlinear
HJI-constrained optimization for measuring the NEF is replaced by LMI-
constrained optimization in equation 2.18, which can be easily solved by
the LMI toolbox in Matlab (Boyd, 1994). (3) The constrained optimization
problem in equation 2.18 could be solved by decreasing ρ2 until no posi-
tive solution P > 0 and γ ≥ 0 exists to obtain the minimum ρ2

0 . (4) Unlike
conventional noise-enhancing analysis and measurements, the proposed
method in equation 2.18 can estimate the NEF from the system properties
of fuzzy local linear neuron systems (i.e., Ai and H). Obviously the locations
of the eigenvalues of Ai still play important roles in the noise enhancing or
noise filtering of HH neuron systems. This will be discussed in the next sec-
tion. This is like a linear lowpass, bandpass, or highpass filter, of which the
noise filter ability is dependent on the transfer function or the system matrix
A in state-space model. The proposed measure method is an extension of
linear filtering theory to the nonlinear stochastic filtering theory only if the
neuron system is considered as a nonlinear filter.

According to the analysis above, the measurement of NEF of stochastic HH
neuron systems is summarized by the following procedure:

1. Give a nonlinear stochastic model for the HH neuron system with an
equilibrium point of interest shifted to the origin as equation 2.5.

2. Select a T-S fuzzy system to approximate the nonlinear stochastic HH
system as equation 2.14.

3. Solve the constrained optimization in equation 2.18 to obtain the NEF
of ρ0.

2.4 Computational Simulation Example. In the analysis of Lee,
Neiman, and Kim (1998), the external stimulus I was taken to be a time-
independent DC current, which served as a bifurcation parameter of the
HH neuron system. In the parameter region I < 6.2 (μA/cm2), the sys-
tem possesses a global attractor with a fixed point, while for 6.2 < I < 9.8
(μA/cm2), the system possesses two coexisting stable attractors with a fixed
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point and a limit cycle. With noise taken into account, the system fluctuates
and displays trains of a few short periodic oscillations around the fixed
point. In this study, the focus of interest is on measuring the NEF of the HH
neuron system around the fixed point. Therefore, in our numerical exper-
iments, we use I = 0, 6, 8, and 9.5 (μA/cm2) as the constant stimulation
current levels in the stochastic HH neuron system.

Consider the stochastic HH neuron system in equation 2.1. We want to
measure the NEF of the stochastic HH neuron system at different constant
stimulation current levels. The equilibrium point of the stochastic HH neu-
ron system is dependent on constant stimulation current I. In this example,
four constant stimulation currents—I = 0, 6, 8 and 9.5 (μA/cm2)—are
considered respectively in the measurement of NEF. First, according to the
above procedure, we find the equilibrium point at (V∗, m∗, h∗, n∗) =
(0.003486713806271 (mV), 0.052982334776129, 0.596553628773007,
0.318074861569072) when I = 0 (μA/cm2); at (V∗, m∗, h∗, n∗) =
(3.759215184333003 (mV), 0.081596330872954, 0.461731687663958,
0.376538405945545) when I = 6 (μA/cm2); at (V∗, m∗, h∗, n∗) =
(4.646567615658967 (mV), 0.090067227493615, 0.390635159502379,
0.430453888649725) when I = 8 (μA/cm2); and at (V∗, m∗, h∗, n∗) =
(5.241964767043118 (mV), 0.096159184979368, 0.400127010471808,
0.409795996369423) when I = 9.5 (μA/cm2) in the noise-free case.
Then we shift the origin to the equilibrium X∗ = (V∗, m∗, h∗, n∗)T of
interest. After we get the shifted nonlinear stochastic HH model in
equation 2.5 with the origin as the equilibrium point of interest, based on
the membership functions in Figure 1, we get the following fuzzy system
to approximate the shifted nonlinear stochastic system in equation 2.5.

If x1(t) is Fi1, x2(t) is Fi2, x3(t) is Fi3, x4(t) is Fi4

then ẋ(t) = Ai x(t) + HW(t), i = 1, 2, . . . , 16, (2.19)

where the system parameters Ai are estimated by fuzzy identification
methods (Passino & Yurkovich, 1998; Takagi & Sugeno, 1985) in the
supplementary material (http://www.mitpressjournals.org/doi/suppl/
10.1162/neco.2010.07-09-1057) and the number of fuzzy rules L = 16 is
given in this example.

First, we consider the effects of synaptic noise (in the case of H = H1) and
channel noises (in the case of H = H2) on the stochastic HH neuron system,
respectively. By solving the LMI-constrained optimization in equation 2.18,
we estimate (1) the NEF ρ0 = 0.060 under only synaptic noises and the NEF
ρ0 = 7.301 under only channel noises when I = 0 (μA/cm2); (2) the NEF
ρ0 = 0.072 under only synaptic noises and the NEF ρ0 = 21.890 under only
channel noises when I = 6 (μA/cm2); (3) the NEF ρ0 = 0.089 under only
synaptic noises and the NEF ρ0 = 21.898 under only channel noises when
I = 8 (μA/cm2); and (4) the NEF ρ0 = 0.555 under only synaptic noises and
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the NEF ρ0 = 20.396 under only channel noises when I = 9.5 (μA/cm2)
(see Figures 4A and 4B). Obviously the synaptic noises are filtered by the
HH neuron system, and the channel noises are enhanced by the HH neuron
system. The locations of the eigenvalues of Ai in the fuzzy locally linearized
systems in the cases above are plotted in Figure 2A. From Figure 2A, in the
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four cases (i.e., I = 0, 6, 8, and 9.5 (μA/cm2)), all eigenvalues of synaptic
processes x1 are located on the left-hand side of the jω-axis (i.e., they are of
passive modes), and some eigenvalues of channel processes x2, x3, and x4

are near or on the jω-axis (i.e., they are of the active modes). Therefore, the
synaptic noises ω1 are filtered (attenuated) by the passive modes of synaptic
processes, whereas the channel noises ω2, ω3, and ω4 are enhanced by the
active modes of ionic channel processes. These facts are consistent with the
observation that the HH system under only synaptic noises spends most
of its time fluctuating around the equilibrium point and displays trains
with a few short periodic oscillations called rigid excitation (Basalyga and
Salinas, 2006; Lee et al., 1998). Furthermore, for confirmation, the synaptic
noise-induced attenuation and the channel noise-induced enhancement
are shown respectively in Figures 3A and 3B by Monte Carlo simulation.
Obviously the mean firing rate of the spike trains of membrane potential
is induced by active modes of channel processes, and the synaptic noises

Figure 2: (A) The locations of eigenvalues of Ai in the fuzzy locally linearized
systems in the S-domain with S = σ + jω in the four cases I = 0, 6, 8, and
9.5 μA/cm2. The eigenvalues corresponding to the synaptic processes and
ionic channel processes are respectively denoted by circles and crosses. The
eigenvalues of the ionic channel processes for sodium activation m, potassium
activation n, and sodium inactivation h are denoted by red cross, green cross
and blue cross, respectively. The state variables x1 of synaptic processes in the
four cases have no eigenvalues located on the jω-axis; the state variables x2 of
sodium activation processes in the four cases have 0, 8, 3, and 1 eigenvalues,
respectively, located on the jω-axis; the state variables x3 of sodium inactivation
processes in the four cases have 0, 1, 1, and 3 eigenvalues, respectively, located
on the jω-axis; and the state variables x4 of potassium activation processes in
the four cases have 0, 9, 4, and 4 eigenvalues respectively located on the jω-
axis. Therefore, the channel noises are enhanced by the active modes of ionic
channel processes when the synaptic noises are filtered by the passive modes
of the synaptic processes. (B) The locations of eigenvalues of linearized deter-
ministic HH neuron system in the S-domain with S = σ + jω in the four cases
I = 0, 6, 8, and 9.5 μA/cm2. The symbols of state variables are the same as
those shown in A. In the four constant current cases of linearized determin-
istic HH neuron system, the state variables x2 and x4 are both located on the
jω-axis. Although A and B are partly similar, the characteristics of nonlinear
stochastic neuron system approximated by stochastic fuzzy system cannot be
interpreted completely by the linearized deterministic case of HH neuron sys-
tem. From the above two results, we infer that noise enhancement is performed
by the active modes of two major processes: sodium activation and potassium
activation processes. As the constant current level increases, noise enhance-
ment is partly performed by the active modes of sodium inactivation. (For the
color version, see Figure S1 in the supplementary material, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2010.07-09-1057.)
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Figure 3: Noise-enhancing (or noise-filtering) abilities, membrane voltages v(t),
and their resonant frequencies are obtained from Monte Carlo simulations with
different constant currents (I = 0, 6, 8, 9.5 μA/cm2) under three cases of en-
vironmental noises: (A) under only synaptic noises, (B) under only channel
noises, and (C) under both synaptic and channel noises. Obviously synaptic
noises are attenuated as in Figure 3A by passive modes of synaptic processes of
HH neuron systems as shown in Figure 2A. The channel noises are enhanced
in B by active eigenvalues of ionic channel processes as in Figure 2A. The af-
fection on the NEF in C is dominated by the presence of channel noises. For
the computations of mean firing rates, the occurrences of action potentials are
defined by upward crossings of voltage threshold 60 (mV) if it had previously
crossed the equilibrium point of membrane potentials from below (Dayan and
Abbott, 2001; Koch, 1999).

are attenuated by passive modes of synaptic processes. In general, the
simulation results by Monte Carlo simulation match the above estimated
results of the proposed method in equation 2.18 quite well. From a
systematic point of view, synaptic processes can attenuate synaptic noises
in HH systems by locating all eigenvalues on the left-hand side of jω-axis
(see the black circles in Figure 2A). The ionic channel processes play a major
role in accelerating the generation of probabilistic spiking in the stochastic
HH system by locating some eigenvalues of sodium activation, m (see
Figure 2A, red cross), and potassium activation, n (see Figure 2A, green
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cross), on the jω-axis. As the constant current level increases, probabilistic
spiking is accelerated by locating not only sodium activation and potassium
activation but also sodium inactivation, h (see Figure 2A, blue cross), on the
jω-axis. Therefore, stochastic ionic channel processes may boost neuronal
response to weak stimuli and are responsible for subthreshold oscillations
and spiking behavior (Lee & Kim, 1999; White, Budde, & Kay, 1995).

Finally, this study discusses the total effect of both synaptic and channel
noises on HH neuron systems. Then by solving the LMI-constrained opti-
mization in equation 2.18 under both synaptic and channel noises (i.e., in the
case of H = I , we estimate the total NEF ρ0 = 8.235 when I = 0 (μA/cm2);
ρ0 = 21.673 when I = 6 (μA/cm2); ρ0 = 22.189 when I = 8 (μA/cm2); and
ρ0 = 19.584 when I = 9.5 (μA/cm2) (see Figure 4B). Obviously total noises
are enhanced by the HH neuron systems in the four constant stimulation
current cases. Under these circumstances, the environmental noises can ac-
celerate spike generation as shown in Figure 3C by Monte Carlo simulation.
Since there are several eigenvalues near the jω-axis (see Figure 2A), the HH
neuron system is very sensitive to the environmental noises from the point
of view of the system. From the Monte Carlo simulation in Figure 3C, the
total noise-enhancing level of the HH neuron system can be approximately
measured as follows,

ρ2 ≈
1
50

∑50
k=1

∫ ∞
0 v2

k (t) dt
1
50

∑50
k=1

∫ ∞
0 WT

k (t)Wk(t) dt
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(8.0837)2 if I = 0 μA/cm2

(21.1021)2 if I = 6 μA/cm2

(21.9579)2 if I = 8 μA/cm2

(19.3566)2 if I = 9.5 μA/cm2

,

where k denotes the number of random trials (see Figure 4B).

Remark 6. In traditional studies (Jung & Shuai, 2001; Schmid et al., 2004;
Zeng & Jung, 2004), the measurement of variability is statistically solved by
several random trials of stochastic ODE, but in this study, we propose a sys-
tematic method to estimate the noise enhancement and suppression factor
of stochastic HH neuron systems from the system amplification or attenua-
tion point of view by solving an LMI-constrained optimization problem in
equation 2.18 instead. Monte Carlo simulation is used only to produce the
noise-enhancing or noise-filtering level and spike frequency to validate our
results.

From the simulation examples in Figure 3, it is apparent that the NEF esti-
mated by the proposed H∞-enhancing (filtering) theory can be approached
by increasing (decreasing) the noise-induced firing rate. Obviously the HH
neuron system is sensitive to noises, which easily generate “spontaneous”
spikes (Gammaitoni, Hanggi, Jung, & Marchesoni, 1998; Levin & Miller,
1996; Nozaki, Mar, Grigg, & Collins, 1999; Schneidman et al., 1998). This
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Figure 4: (A) The comparison of the estimated NEF (black line) and noise-
enhancing/filtering level (blue line) under only synaptic noises in different
constant currents. (B) The comparison of the estimated NEF (black and red
lines) and noise-enhancing/filtering level (blue and green lines) under only
channel noises and both channel and synaptic noises in different constant
currents. The noise-enhancing level of the HH neuron system is approxi-
mately measured by the Monte Carlo simulation under only channel noises
(blue line) and both channel and synaptic noises (green line) in different con-
stant currents. (C) The measured spike frequency by the Monte Carlo sim-
ulation under only channel noises (black line) and both channel and synap-
tic noises (blue line) in different constant currents. The Monte Carlo simu-
lation can validate our results very well. Therefore, we infer that NEF can
be seen as an index in both noise-enhancing level and spike frequency (For
color version see Figure S2 in the supplementary material, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2010.07-09-1057.)

fact can be proven by nonlinear H∞-enhancing (filtering) theory and con-
firmed by computer simulation (Schneidman et al., 1998). Although the
spikes are easily generated, the firing rate of the spike trains has to reach a
rate threshold to pass the information to downstream neurons (Lo & Wang,
2006; Luce, 1986; Usher & McClelland, 2001). From Figure 3, we show that
the mean firing rates are correlated with NEFs. For example, both the mean
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firing rate and the NEFs are small under only synaptic noises present with
the lack of active modes in the synaptic process (see Figure 3A) and large
under only channel noises and both synaptic and channel noises that result
from enhancement of active modes in channel processes (Figures 3B and 3C)
in HH neuron systems. Furthermore, by comparing the estimated NEF (see
Figure 4B; black and red lines) solved by the LMI-constrained optimization
problem in equation 2.18 with noise-enhancing or noise-filtering level (see
Figure 4B; blue and green lines) and spike frequency (Figure 4C) measured
by the Monte Carlo simulation, the NEF ρ0 can be seen as an index to pass
neural information to downstream neurons.

3 Discussion and Conclusion

Biological neurons have been found to be noisy in both the generation of
action potentials and the transmission of synaptic signals. This is because
the biophysical mechanisms involved are stochastic in nature. Among the
noises in neurons, channel noises come mainly from the random openings
of ion channels, while synaptic noises involve multiple mechanisms such as
quantal releases of neural transmitters (White et al., 2000). As noises directly
affect the reliability of neurons, scholars have taken great interest in how
neurons disregard or even incorporate their intrinsic and extrinsic noises,
so as to process information reliably (Butson & Clark, 2008; Schneidman
et al., 1998; Stein et al., 2005; White et al., 2000).

Some studies based on stochastic neuron models have indicated that
noise is crucial for enriching a single neuron’s behavioral variety (Saarinen
et al., 2006; Tuckwell, 2005), as well as for high-level information process-
ing (Salinas, 2006; Tuckwell, 2005). For example, for the fusimotor system,
noise-induced resonance is used to increase the sensitivity of muscle spindle
to stretching (Cordo et al., 1996). For other neuron systems, noise-induced
resonance has been found useful for enhancing the sensitivity of sensory
neurons in detecting weak periodic signals (Stein et al., 2005; Wiesenfeld
& Moss, 1995) or enhancing the sensitivity of mechanoelectrical transduc-
tion (Jaramillo & Wiesenfeld, 1998). These intriguing findings suggest that
neurons can utilize rather than suppress noises during computing.

In traditional studies, the measurement of variability is statistically
solved by several random trials of stochastic ODE, and they discussed
the effect of total numbers of sodium and potassium channels on the vari-
ations of interspike interval (Jung & Shuai, 2001; Schmid et al., 2004; Zeng
& Jung, 2004). In this study we propose a systematic method to measure
the noise enhancement and suppression factor of stochastic HH neuron
systems from the worst-case signal-to-noise energy ratio point of view. The
worst-case signal-to-noise energy ratio ρ0 is equivalent to the system gain
(i.e., system amplification or attenuation ability; in the linear system case, ρ0

is related to the largest peak of transfer function of the linear system; Boyd,
1994) from W(t) to v(t), which is dependent on the system characteristics,



1756 B.-S. Chen and C.-W. Li

like eigenvalues, from the system theory point of view (Boyd, 1994). In
the linear filter case, the lowpass, bandpass, or highpass filtering ability is
rather dependent on the transfer function or the eigenvalues of system ma-
trix of the linear filter than dependent on the external noises. Our method is
the extension of the linear filtering theory to the nonlinear filtering theory
only if the neuron system is considered as a nonlinear filter. Monte Carlo
simulation is used only to produce noise-enhancing or noise-filtering level
and spike frequency to validate our results. The estimation of NEF is to
measure the signal-to-noise ratio—the system gain from all possible input
noises W(t) to output membrane potential v(t), from the perspective of mean
energy. From our result, the measure of the noise enhancement or suppres-
sion factor is determined by the system characteristics, for example, the
eigenvalues of fuzzy linearized neuron systems. Therefore, noise variance
does not affect on the noise enhancement or suppression factor ρ0 of the de-
rived results, because we have considered all possible noises with bounded
variances in the analysis process. The input noise cannot affect the intrinsic
system characteristics of the neuron system. Although the total numbers
of sodium and potassium channels NNa and NK will affect the variances of
channel noises, the NEF from the perspective of the mean energy ratio is
correlated with the system characteristic of the neuron system rather than
with the variances of channel noises if they are finite.

According to our results in the estimation of the NEF of stochastic HH
neuron systems in Figure 4B, the NEF is increased with externally applied
current and slightly decreased in the case I = 9.5 μA/cm2 under both
synaptic and channel noises. The same result is also shown in Schmid et al.
(2004). The mean spiking rate under I = 10 μA/cm2 is N times larger than
that under I = 0 μA/cm2 in different numbers of ion channels.

In this study, a nonlinear stochastic HH neuron model is developed to
formulate HH neuron systems with synaptic noises and channel noises. In
order to exploit the NEF of the neuron system, according to the nonlin-
ear stochastic H∞-enhancing (filtering) theory, the estimation problem of
noise-induced enhancing level is formulated as in proposition 1. In order to
avoid the difficulty of solving HJI for estimating NEF, a T-S fuzzy system is
employed to approach the nonlinear stochastic HH neuron model with the
interpolation of several local linear stochastic models. Hence, solving HJI
for estimating the noise enhancement problem in the HH neuron system is
simplified by solving a set of LMIs as in proposition 2, which can be effi-
ciently solved by the LMI toolbox in Matlab. As ρ0 increases, the affection
of the noises on HH neuron systems increases. Under such circumstances,
some states of the neuron system may be induced by noises and are related
to the generation of probabilistic spiking. The accelerated spike generation
that enhances the noise-induced firing rate of spike trains is related to the
active eigenvalues on the jω-axis of fuzzy linearized HH neuron systems.
In general, synaptic noises are more attenuated by passive eigenvalues of
synaptic processes, whereas channel noises are more enhanced by the active
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eigenvalues of stochastic ionic channel processes. Unlike conventional
stochastic simulation methods, we propose a method of theoretical ana-
lytical estimation based on nonlinear stochastic H∞-enhancing (filtering)
theory from the system perspective—that is, the noise-enhancing or noise-
filtering ability would lie in the intrinsic system characteristics of neuron
system rather than in the external noises. The proposed method of NEF mea-
surement can be confirmed by the measurement of Monte Carlo stochastic
simulation and can be also seen as an index to pass neural information to
downstream neurons.

Appendix A: Proof of Proposition 1

Before the proof of propositions, the following fact (fact 1) is necessary
(Boyd, 1994):

XT PY + YT P X ≤ 1
α

XT P X + αYT PY

for vectors X, Y, a constant α > 0, and a positive-definite matrix P > 0 with
approximate dimensions.

Proof of Proposition 1. Consider the following equivalent equation:

E
∫ ∞

0
v2(t) dt = E�(x(0)) − E�(x(∞))

+ E
∫ ∞

0

(
xT(t)Qx(t) dt + d�(x(t))

)
(A.1)

where �(x(t)) > 0.
By chain rule, we get (Gardiner, 1983; Khas’minskii, 1980)

d�(x(t)) = ∂�(x(t))T

∂x
(F (x(t) + X∗) + HW(t)) dt. (A.2)

Substituting the above equation into A.1, by the fact that �(x(∞)) > 0, we
get

E
∫ ∞

0
v2(t) dt ≤ E�(x(0)) + E

∫ ∞

0

(
xT(t)Qx(t)

+ ∂�(x(t))T

∂x
(F (x(t) + X∗) + HW(t))

)
dt. (A.3)
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By fact 1 with α = ρ2, X = (1/2) · HT∂�(x(t))/∂x, and Y = W(t), we have

∂�(x(t))T

∂x
HW(t) = 1

2
∂�(x(t))T

∂x
HW(t) + 1

2
W(t)T HT ∂�(x(t))

∂x

≤ 1
4ρ2

∂�(x(t))T

∂x
H HT ∂�(x(t))

∂x
+ ρ2W(t)TW(t). (A.4)

Therefore, we can obtain

E
∫ ∞

0
v2(t) dt ≤ E�(x(0))

+ E
∫ ∞

0

[
xT(t)Qx(t) + ∂�(x(t))T

∂x
F (x(t) + X∗)+

+ 1
4ρ2

∂�(x(t))T

∂x
H HT ∂�(x(t))

∂x
+ ρ2W(t)TW(t)

]
dt.

(A.5)

By the inequality in equation 2.9, we get

E
∫ ∞

0
v2(t) dt < E�(x(0)) + ρ2E

∫ ∞

0
W(t)TW(t) dt. (A.6)

Obviously, the noise-enhancing level in equation 2.8 is achieved.

Appendix B: Proof of Proposition 2

Proof of Proposition 2. Consider the following equivalent equation:

E
∫ ∞

0
v2(t) dt = E�(x(0)) − E�(x(∞))

+E
∫ ∞

0
(xT(t)Qx(t) dt + d�(x(t))), (B.1)

where �(x(t)) = x(t)T Px(t) for some P = PT>0.

By chain rule (Khas’minskii, 1980) and equation 2.14, we get

E [d�(x(t))] = E
∂�(x(t))T

∂x

{
L∑

i=1

hi (x) [Ai x(t) + HW(t) + 
 f (x)]

}
dt

= E

{
L∑

i=1

hi (x)
[
x(t)T(P Ai + AT

i P)x(t) + x(t)T P HW(t)
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+ W(t)T HT Px(t)

+ x(t)T P
 f (x) + 
 f (x)T Px(t)
]

dt
}
. (B.2)

Substituting the above equation into B.1, by the fact that �(x(t)) =
x(t)T Px(t), we get,

E
∫ ∞

0
v2(t) dt ≤ E�(x(0))

+ E
∫ ∞

0

{
L∑

i=1

hi (x)
[
x(t)T(

P Ai + AT
i P + Q

)
x(t)

+ x(t)T P HW(t) + W(t)T HT Px(t) + x(t)T P
 f (x)

+
 f T(x)Px(t)
]}

dt. (B.3)

By fact 1, we get

x(t)T P HW(t) + W(t)T HT Px(t) ≤ 1
ρ2 x(t)T P H HT Px(t) + ρ2W(t)TW(t)

(B.4)

and

x(t)T P
 f (x) + 
 f T(x)Px(t) ≤ 1
γ 2 x(t)T P Px(t) + γ 2
 f T(x)
 f (x).

(B.5)

By equations B.4, B.5, and 2.15, we get

E
∫ ∞

0
v2(t) dt ≤ E�(x(0))

+ E
L∑

i=1

∫ ∞

0
hi

[
xT(t)

(
P Ai + AT

i P + Q + P
(

1
γ 2 I + 1

ρ2 H HT
)

P

+ γ 2α2 I
)

x(t) + ρ2WT(t)W(t)
]

dt. (B.6)

By the inequalities in equation 2.16, we get

E
∫ ∞

0
v2(t) dt < E�(x(0)) + ρ2E

∫ ∞

0
WT(t)W(t) dt. (B.7)
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Obviously, the noise-enhancing level in equation 2.8 is achieved. Further-
more, by Shur complement (Boyd, 1994), the inequalities in equation 2.16
are equivalent to the LMIs in equation 2.18.
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