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Abstract
The design of optical buffers for packet contention resolution has been recognized as a key issue

in all-optical packet switching. One of the most general buffering schemes is priority queues, which
includes first-in first-out (FIFO) queues and last-in first-out (LIFO) queues as special cases. In a priority
queue, each packet is associated with a unique priority upon its arrival, the packet with the highest
priority is sent out from the queue whenever there is a departure request and there are packets in the
queue, and the packet with the lowest priority is dumped from the queue whenever there is a buffer
overflow. In this paper, we consider the constructions of optical priority queues by using a feedback
system consisting of an optical (bufferless) crossbar switch and multiple optical FIFO multiplexers with
delay one (FM1’s) in the feedback path for buffering packets and feeding packets back to the switch.
Such a feedback system is a generalization of that used in one of the authors’ earlier attempt for
the constructions of optical priority queues in [19]. We fix the no-buffering problem in [19] by using
optical FM1’s to replace the optical FIFO multiplexers (FM’s) in [19], which enables us to successfully
achieve an exact emulation of a priority queue. We improve the utilization of buffering capacity over
that in [19] by routing packets to the optical FM1’s according to their buffering tags instead of their
tags as used in [19]. We also extend and generalize the construction in [19] and obtain a much larger
class of constructions of optical priority queues. Our constructions are made possible by showing that
the highest-priority (resp., lowest-priority) packet is always available at the input links of the switch
whenever it needs to be routed to the departure (resp., loss) link, and by showing that there is no
collision and there is no buffer overflow at any FM1 at any time so that there is no internal packet loss
at any time. Our complexity analysis shows that by using a feedback system consisting of an optical
(M+2)× (M+2) (bufferless) crossbar switch and M fiber delay lines, we can achieve a buffer size of
2O(

√
αM), where α is a constant that depends on the parameters used in our constructions. Furthermore,

we show that the best buffer size that we can achieve is 2O(
√

4M/15). Our result (exponential in
√
M )

substantially improves on the best known result (polynomial in M ) in the literature. Our numerical
results show that the construction complexity of our constructions is lower than that of the construction
in [19], and the actual saving, in terms of the number of 2 × 2 switches needed, by our constructions
could be quite significant even in the tiny-buffer and small-buffer regimes.
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I. INTRODUCTION

Current packet-switched networks suffer from the notorious optical-electrical-optical (O-E-O)
conversion, which is quite expensive and time-consuming, and hence cannot keep up with the
pace of the growing optical fiber link capacity. A natural and attractive solution for overcoming
the existing O-E-O hurdle and making good use of the tremendous bandwidth offered by
optical fiber links is all-optical packet switching. However, optical random-access memory
(RAM) is not available yet for contention resolution among packets competing for the same
resources. Fortunately, we only need buffering schemes that can exactly emulate certain special
arrival/departure patterns in many packet-switched networks. Such buffering schemes with special
arrival/departure patterns are generally known as queues in the context of queueing theory.

In all-optical packet switching, the design of optical queues has been well recognized as
a very challenging problem. In the last two-plus decades, there have been extensive studies
on the constructions of a variety of optical queues by using fiber delay lines as the storage
media and using optical (bufferless) crossbar switches to direct optical packets through the fiber
delay lines in a carefully designed manner so as to achieve exact emulations of the optical
queues. Such Switched-Delay-Lines (SDL) constructions of optical queues by using optical
crossbar switches and fiber delay lines include output-buffered switches, first-in first-out (FIFO)
multiplexers [1]–[12], FIFO queues, last-in first-out (LIFO) queues, priority queues [13]–[19],
time slot interchanges, linear compressors, linear decompressors, non-overtaking delay lines,
flexible delay lines, FIFO contractors, LIFO contractors, and absolute contractors. Due to space
constraint, we only list the references [1]–[19] on optical FIFO multiplexers (FM’s) and optical
priority queues that are directly related to the constructions in this paper, and results on the
other types of optical queues and results on fundamental complexity, performance analysis, and
review articles for SDL constructions of optical queues can be found in the references therein.

The main research issue in SDL constructions of optical queues is on the design of the delays
of the fiber delay lines and the design of the routing policy performed by the optical crossbar
switches, which are closely related and highly coupled. As in most works on SDL constructions
of optical queues in the literature, in this paper we consider the following discrete-time settings:
(i) Time is slotted and synchronized. (ii) Packets are of the same size so that a packet can
be transmitted through a link within a time slot. (iii) An optical M ×M (bufferless) crossbar
switch is a network element with M input links and M output links that can realize all of the M !

permutations between its inputs and its outputs. (iv) A fiber delay line with delay d is a network
element with one input link and one output link that requires d time slots for a packet to traverse
through. We note that variable-size packets can be easily taken care of by introducing packet
segmentation at the source and packet reassembly at the destination. For reason of conciseness,
in the rest of this paper we simply refer to time slot t as “slot t.”

In this paper, we consider SDL constructions of optical priority queues. A priority queue
with buffer size B has one arrival link, one departure link, one loss link, and one control input
(see Figure 1(a)). Each packet is associated with a unique priority upon its arrival so that every
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Fig. 1. (a) A priority queue with buffer size B. (b) A construction of an optical priority queue in [13].

packet in the queue has a distinct priority and the relative priority order between any two packets
remains unchanged as long as they are in the queue. When there is a departure request from the
controller and there are packets in the queue, the packet with the highest priority is sent out from
the queue through the departure link. When there is a buffer overflow, the packet with the lowest
priority is dumped from the queue through the loss link. Since packet arrival times and packet
departure requests can be arbitrary, and packet priority assignments can also be arbitrary as
long as the above-mentioned constraints on packet priorities are satisfied, it is clear that priority
queues are very general and include FIFO queues and LIFO queues as special cases. However,
this also means that the design of optical priority queues is expected to be more challenging
than the other types of optical queues.

The first construction of optical priority queues appeared in [13], in which an optical priority
queue with buffer size O(M2) was constructed by using a feedback system consisting of an
optical (M+2)×(M+2) (bufferless) crossbar switch and M fiber delay lines (see Figure 1(b)).
A theoretical upper bound 2M on the buffer size that can be achieved by using such a feedback
system was also given in [13]. The proof in [13] is quite elaborate and a simpler proof was
given in [14]. The buffer size O(M2) achieved in [13] was improved to O(M3) in [15], and
was improved to O(M c) for any positive integer c in [18]. The constructions in [13]–[15] use
a sorting-based routing policy, where the packets at the input links of the crossbar switch are
first sorted according to their priorities and then routed to the departure link, the loss link, or
the fiber delay lines. Such a sorting-based approach only uses the relative priority order among
packets at the input links of the crossbar switch, instead of directly using their priorities, to
design the routing policy performed by the crossbar switch, and this is the main reason why the
buffer sizes achieved in these constructions are limited to polynomial in M .
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Fig. 2. (a) The feedback system in [19]. (b) An n-to-1 FIFO multiplexer with buffer size B.

To achieve a buffer size beyond polynomial in M , it was proposed in [19] to replace each
fiber delay line in Figure 1(b) with a group of three parallel optical 4-to-1 FIFO multiplexers
(see Figure 2(a)), and use a simple priority-based routing policy that directly uses the priorities
of the packets at the input links of the crossbar switch for the routing of packets. An n-to-1 FIFO
multiplexer (nFM) with buffer size B has n arrival links, one departure link, and n−1 loss links
(see Figure 2(b)), where the packet with the earliest arrival time leaves from the departure link
whenever there are packets in the nFM, and the packets with the latest arrival times are dumped
through the loss links whenever there is a buffer overflow at the nFM. At each slot t, a packet
p in the feedback system in Figure 2(a) is associated with a unique positive integer τp(t), called
the tag of packet p at slot t, to indicate its priority level so that the ith-highest-priority packet in
the queue has a tag equal to i. Specifically, if there are q(t− 1) packets stored in the buffers of
the 4FM’s at slot t−1 and there are a(t) arrival packets at slot t, then the q(t−1)+a(t) packets
in the queue at slot t are assigned tags from 1 to q(t − 1) + a(t) in the order of decreasing
priority. Furthermore, each group of 4FM’s is associated with a unique set of tags, say the ith

group of 4FM’s is associated with the set Ψi of tags for all i = 1, 2, . . . , 2`− 1. At slot t, if a
packet p at the input links of the crossbar switch is not routed to the departure link or the loss
link, then it has to be stored in the buffers of the 4FM’s, and it is routed to the ith group of
4FM’s if τp(t) ∈ Ψi under the priority-based routing policy in [19].

Two problems can arise in [19] as described below. (i) The no-buffering problem: We assume
that the feedback system in Figure 2(a) is initially empty at slot t = 0. At slot t = 1, suppose
that there is an arrival packet, say packet p, and there is no departure request. Then packet p has
to be buffered in the 4FM’s at slot t = 1. As τp(1) = 1 (note that packet p is the only packet
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Fig. 3. (a) A construction of an optical priority queue by using an optical (kmn+ 2)× (kmn+ 2) (bufferless) crossbar switch
and k groups of m parallel optical n-to-1 FIFO multiplexers with delay one. (b) An n-to-1 FIFO multiplexer with delay one
and buffer size B.

in the queue at slot t = 1) and Ψ1 = {1} (according to the assignment of the sets Ψi’s in [19]),
we see that τp(1) ∈ Ψ1 and hence packet p is routed to the first group of 4FM’s at slot t = 1

under the priority-based routing policy in [19]. Since the 4FM to which packet p is routed is
empty when packet p arrives, packet p is immediately sent out from that 4FM and thus it is not
successfully buffered at slot t = 1. This leads to the failure of the constructions in [19]. To fix
such a no-buffering problem, in this paper we propose to replace the optical 4FM’s in Figure 2(a)
with optical 4-to-1 FIFO multiplexers with delay one (see Figure 3(a) with k = 2`− 1 for some
` ≥ 2, m = 3, and n = 4). An optical n-to-1 FIFO multiplexer with delay one (nFM1) and
buffer size B is defined as the concatenation of an optical nFM with buffer size B − 1 and a
fiber delay line with delay equal to one, where the departure link of the nFM is connected to the
input link of the fiber delay line (see Figure 3(b)). As it takes one slot for a packet to traverse
through a fiber delay line with delay equal to one, a packet admitted into an nFM1 is buffered
there for at least one slot. This solves the no-buffering problem.

(ii) Inefficient utilization of buffering capacity: Assume that we have replaced the optical
4FM’s in Figure 2(a) with optical 4FM1’s so as to fix the no-buffering problem as mentioned
above in (i), and assume that the feedback system is initially empty at slot t = 0. Consider the
case that ` = 2 so that B1 = B2 = B3 = 1, Ψ1 = {1}, Ψ2 = {2, 3}, and Ψ3 = {4} according to
the assignment of Bi’s and Ψi’s in [19]. At slot t = 1, suppose that there is an arrival packet, say
packet p1, and there is no departure request. As already discussed in (i), packet p1 is routed to
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Fig. 4. An illustration of the inefficient utilization of buffering capacity in [19]. (a) At slot t = 2, packet p1 with τp1(2) = 1
leaves from the first group of 4FM1’s and appears at input link 1 of the crossbar switch, and packet p2 with τp2(2) = 2 ∈ Ψ2

arrives from the arrival link. (b) At slot t = 2, packet p1 is routed to the departure link and packet p2 is routed to the second
group of 4FM1’s under the priority-based routing policy in [19]. We note that the input links of each group of 4FM1’s are
numbered from 0 to 11 and this will be used in the description of the round-robin routing policy (R3) in Section II-C.

the first 4FM1 in the first group of 4FM1’s at slot t = 1. As B1 = 1, packet p1 will be buffered
in that 4FM for one slot and then leave from the first group of 4FM1’s and appear at input link
1 of the crossbar switch at slot t = 2 (see Figure 4(a)). At slot t = 2, suppose that there is
another arrival packet, say packet p2, with priority lower than packet p1 (see Figure 4(a)), and
there is a departure request. Then it is clear that τp1(2) = 1 and τp2(2) = 2, and hence at slot
t = 2 packet p1 is routed to the departure link (as it is the highest-priority packet in the queue)
and packet p2 is routed to the second group of 4FM1’s (as τp2(2) ∈ Ψ2) as shown in Figure 4(b)
under the priority-based routing policy in [19]. Since the 4FM1’s in the first group are empty
at slot t = 2, their buffers are not used at slot t = 2, and this is a waste in the utilization of
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buffering capacity. In general, when there is a departure request at slot t, the packet with tag
one (i.e., the packet with the highest priority in the queue) is routed to the departure link, and
the other packets at the input links of the crossbar switch have tags greater than one and hence
are routed to the groups of 4FM1’s other than the first group (since Ψ1 = {1}). Therefore, the
buffers in the first group are not used at slot t.

A simple way to improve this situation is to focus on the packets that have to be stored in
the buffers of the 4FM1’s. At each slot t, a packet p that has to be stored in the buffers of the
4FM1’s is associated with a unique positive integer τ̃p(t), called the buffering tag of packet p at
slot t, so that the ith-highest-priority packet among all of the packets that have to be buffered in
the 4FM1’s has a buffering tag equal to i. Specifically, if there are q(t− 1) packets stored in the
buffers of the 4FM1’s at slot t−1 and there are a(t) arrival packets, d(t) departure packets, and
`(t) loss packets at slot t, then the q(t− 1) + a(t)− d(t)− `(t) packets that have to be buffered
in the 4FM1’s at slot t are assigned buffering tags from 1 to q(t − 1) + a(t) − d(t) − `(t) in
the order of decreasing priority. Note that a packet with a smaller buffering tag has a higher
priority than a packet with a larger buffering tag. The ith group of 4FM1’s is now associated
with a set Ψi of buffering tags for all i = 1, 2, . . . , 2` − 1. At slot t, a packet p with buffering
tag τ̃p(t) ∈ Ψi is routed to the ith group of 4FM1’s. Since we number the buffering tags starting
from 1, the packet with buffering tag equal to 1 is always routed to the first group of 4FM1’s
(as 1 ∈ Ψ1 = {1}) so that the buffers in the first group of 4FM1’s are utilized. This improves
the utilization of buffering capacity. In the above example, we have τ̃p2(2) = 1 (as packet p2
is the only packet that has to be buffered in the 4FM1’s at slot t = 2), and hence packet p2 is
routed to the first group of 4FM1’s at slot t = 2 (as τ̃p2(2) = 1 ∈ Ψ1 = {1}).

In this paper, we not only fix the no-buffering problem (by replacing the 4FM’s in Figure 2(a)
with 4FM1’s) and improve the utilization of buffering capacity over that in [19] (by using
buffering tags, instead of tags, in the priority-based routing policy), but also extend and generalize
the construction in [19] and obtain a much larger class of constructions of optical priority queues.
Specifically, we use the feedback system in Figure 3(a) consisting of an optical (kmn + 2) ×
(kmn+ 2) (bufferless) crossbar switch and k groups of optical nFM1’s, where the ith group has
m parallel optical nFM1’s with the same buffer size Bi (Bi ≥ 1) for i = 1, 2, . . . , k. We show in
Theorem 7 (see Section III) that the feedback system in Figure 3(a) can be operated as an optical
priority queue with buffer size Uk =

∑k
i=1 |Ψi| under the priority-based routing policy (R1)–(R3)

(see Section II-C) if 1 ≤ s ≤ k − 1, where s is a parameter in the conditions (A1)–(A3) (see
Section III), m ≥ 1, and n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the conditions (A1)–(A3).
We note that the construction in [19] is a special case of the constructions in this paper with
s = 1, k = 2` − 1 for some ` ≥ 2, m = 3, n = 4, B1 = B2`−1 = 1, Bi = B2`−i = 2i−2 for
2 ≤ i ≤ `, and |Ψi| = |Ψ2`−i| = 2i−1 for 1 ≤ i ≤ `.

Our constructions are made possible by showing that the highest-priority (resp., lowest-priority)
packet is always available at the input links of the crossbar switch whenever there is a departure
request and there are packets in the queue (resp., whenever there is a buffer overflow) so that it
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can be routed to the departure (resp., loss) link whenever necessary, and by showing that there is
no collision and there is no buffer overflow at any nFM1 at any slot so that there is no internal
packet loss in the queue at any slot.

The rest of this paper is organized as follows. In Section II, we give more details about priority
queues and nFM1’s, describe the priority-based routing policy performed by the crossbar switch
in Figure 3(a), and derive some basic properties on the buffering tags under our priority-based
routing policy. Then we show in Section III that the feedback system in Figure 3(a) can be
operated as an optical priority queue under our priority-based routing policy. In Section IV, we
perform a complexity analysis for our constructions with maximum buffer sizes and show that
a buffer size of 2O(

√
αM) can be achieved by using an optical (M + 2) × (M + 2) (bufferless)

crossbar switch and M fiber delay lines, where α is a constant that depends on the parameters
used in our constructions. In Section V, we describe the router buffer sizing problem, present
our numerical results, and discuss some feasibility issues. Finally, we conclude this paper in
Section VI.

II. PRIORITIES QUEUES, NFM1’S, PRIORITY-BASED ROUTING POLICY, AND BASIC
PROPERTIES ON BUFFERING TAGS

In this paper, we assume that every network element is initially empty at slot t = 0. Recall
that for the sake of conciseness, we have abbreviated n-to-1 FIFO multiplexer (resp., n-to-1
FIFO multiplexer with delay one) as nFM (resp., nFM1). We have also denoted τp(t) (resp.,
τ̃p(t)) as the tag (resp. buffering tag) of a packet p in a priority queue at slot t.

Since a packet can be transmitted through a link within a slot, there can be at most one packet
in a link at any slot, and hence we can characterize a link by its link state, say a link is in state
1 (resp., 0) at slot t if there is a packet (resp., there is no packet) in the link at slot t.

A. Priorities Queues

For a priority queue with buffer size B as shown in Figure 1(a), we denote a(t), d(t), and
`(t) as the link states of the arrival link, the departure link, and the loss link, respectively, at
slot t. We denote c(t) = 1 (resp., c(t) = 0) if there is a departure request (resp., there is no
departure request) from the controller at slot t. Let q(t) be the number of packets stored in the
buffer of the priority queue at slot t.

Then a priority queue with buffer size B is characterized by the following five properties:
(P1) Flow conservation: Packets arriving from the arrival link are either stored in the buffer or
transmitted through the departure link or the loss link. Thus, we have q(t) = q(t− 1) + a(t)−
d(t)− `(t). (P2) Nonidling: There is a departure packet at slot t only when there is a departure
request from the controller and there are packets in the queue at slot t. Thus, we have d(t) = 1

if c(t) = 1 and q(t− 1) + a(t) > 0, and d(t) = 0 otherwise. (P3) Maximum buffer usage: There
is a loss packet at slot t only when there is a buffer overflow at slot t. Thus, we have `(t) = 1

if c(t) = 0, q(t − 1) = B, and a(t) = 1, and `(t) = 0 otherwise. (P4) Priority departure: If
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there is a departure packet, say packet p, at slot t, then packet p is the packet with the highest
priority in the queue at slot t, i.e., τp(t) = 1. (P5) Priority loss: If there is a loss packet, say
packet p, at slot t, then packet p is the packet with the lowest priority in the queue at slot t,
i.e., τp(t) = B + 1.

We note that the tag and the buffering tag of a packet in a priority queue can change as
time evolves due to the arrivals and departures of packets with priorities higher than that packet
(packets with priorities lower than that packet have no effect on the change of its tag or buffering
tag). Specifically, consider the scenario that the properties (P4) and (P5) are satisfied at slot t
and a packet p in the queue at slot t is not the departure packet (if any) or the loss packet
(if any) at slot t so that it has to be buffered in the queue at slot t. Then it is clear that the
departure (resp., loss) packet (if any) at slot t has priority higher (resp., lower) than packet p by
(P4) (resp., by (P5)), and hence we have

τ̃p(t) = τp(t)− d(t). (1)

Now consider the scenario that the properties (P1), (P4), and (P5) are satisfied at slot t − 1

and a packet p is buffered in the queue at slot t − 1. Then it is clear that there is no internal
packet loss in the queue at slot t− 1 (by (P1)) and hence we have

τp(t) = τp(t− 1)− d(t− 1) + ap(t), (2)

where ap(t) is the number of arrival packets at slot t with priorities higher than packet p.
Furthermore, consider the scenario that the property (P1) is satisfied at slot t − 1 and the

properties (P4) and (P5) are satisfied at slots t−1 and t, and a packet p is buffered in the queue
at slot t− 1 and has to be buffered in the queue at slot t. Then we see from (1) and (2) (note
that we have used (1) twice) that

τ̃p(t) = τ̃p(t− 1)− d(t) + ap(t), (3)

where ap(t) is the number of arrival packets at slot t with priorities higher than packet p.

B. n-to-1 FIFO Multiplexers and n-to-1 FIFO Multiplexers with Delay One

An nFM with buffer size B is shown in Figure 2(b). To break the tie among packets arriving
at the same time, we assume that the arrival links are prioritized so that the priorities of the
arrival links are decreasing in the link indices, i.e., packets from arrival links with smaller link
indices are regarded as arriving earlier than those from arrival links with larger link indices.
We denote a′i(t) as the link state of arrival link i at slot t for i = 1, 2, . . . , n, denote d′(t) as
the link state of the departure link at slot t, and denote `′i(t) as the link state of loss link i at
slot t for i = 1, 2, . . . , n − 1. Let a′(t) =

∑n
i=1 a

′
i(t) and `′(t) =

∑n−1
i=1 `

′
i(t) be the number of

packets arriving from the arrival links and the number of packets dumped through the loss links,
respectively, at slot t. Let q′(t) be the number of packets buffered in the nFM at slot t.

Then an nFM with buffer size B is characterized by the following five properties: (M1) Flow
conservation: This property is the same as property (P1). Thus, we have q′(t) = q′(t−1)+a′(t)−
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d′(t) − `′(t). (M2) Nonidling: There is a departure packet at slot t whenever there are packets
in the queue at slot t. Thus, we have d′(t) = 1 if q′(t− 1) + a′(t) > 0, and d′(t) = 0 otherwise.
(M3) Maximum buffer usage: There is a loss packet at slot t only when there is a buffer overflow
at slot t. Thus, we have `′(t) = q′(t − 1) + a′(t) − 1 − B if q′(t − 1) + a′(t) − 1 > B, and
`′(t) = 0 otherwise. (M4) FIFO departure: Packets depart in the FIFO order. (M5) FIFO loss
with prioritized loss links: If there are loss packets at slot t, i.e., `′(t) > 0, then the loss packets
are the latest `′(t) arrival packets at slot t and they are dumped through loss links 1, 2, . . . , `′(t)

in the order of increasing arrival link indices.
An nFM1 with buffer size B is defined as the concatenation of an optical nFM with buffer

size B− 1 and a fiber delay line with delay equal to one as shown in Figure 3(b). We make the
following remark on nFM1’s that will be useful later in this paper.

Remark 1 (i) From the properties (M2) and (M4), we can see that a packet admitted into an
nFM with buffer size B − 1 is buffered there for at most B − 1 slots. Therefore, it is clear from
Figure 3(b) that a packet admitted into an nFM1 with buffer size B is buffered there for at least
one slot and at most B slots. It follows that a packet admitted into an nFM1 with buffer size
B = 1 is buffered there for exactly one slot.

(ii) When there are packets buffered in an nFM1 with buffer size B as shown in Figure 3(b),
it is easy to see from the property (M2) that one of those packets must be buffered in the fiber
delay line with delay one. Thus, the buffering capacity of the fiber with delay one is fully utilized.
As an nFM with buffer size B − 1 has the capability of buffering B − 1 packets, it then follows
that the effective buffering capacity of such a concatenation in Figure 3(b) is B.

C. The Priority-Based Routing Policy

As mentioned in Section I, each group of nFM1’s in Figure 3(a) is associated with a unique set
of buffering tags. Specifically, the ith group of nFM1’s is associated with the set Ψi of buffering
tags for i = 1, 2, . . . , k as described below. Let Uk be the targeted buffer size of the optical
priority queue in our construction. Partition the set Ψ = {1, 2, . . . , Uk} of buffering tags into k
pairwise disjoint nonempty subsets Ψi = {Ui−1 + 1, Ui−1 + 2, . . . , Ui}, i = 1, 2, . . . , k, where

U0 = 0 < U1 < U2 < · · · < Uk. (4)

It is clear that |Ψi| = Ui − Ui−1 for i = 1, 2, . . . , k and Ui =
∑i

j=1 |Ψj| for i = 1, 2, . . . , k. Let
Li = Ui−1 + 1 so that we can write Ψi as Ψi = {Li, Li + 1, . . . , Ui} for i = 1, 2, . . . , k. Note
that L1 = U0 + 1 = 1 and we have from (4) that Li ≤ Ui for i = 1, 2, . . . , k.

Then the crossbar switch in Figure 3(a) is operated according to the following priority-based
routing policy at all slots t ≥ 1.

(R1) Departure packets: If there is a departure request from the controller and there are
packets in the queue at slot t, i.e., c(t) = 1 and q(t − 1) + a(t) > 0, then the highest-priority
packet (if any) among all of the packets from the arrival link or the m output links of the first
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group of nFM1’s is routed to the departure link at slot t. Otherwise, no packet is routed to the
departure link at slot t.

(R2) Loss packets: If there is a buffer overflow at slot t, i.e., c(t) = 0, q(t − 1) = Uk, and
a(t) = 1, then the lowest-priority packet (if any) among all of the packets from the arrival link
or the m output links of the last group of nFM1’s is routed to the loss link at slot t. Otherwise,
no packet is routed to the loss link at slot t.

(R3) Round-robin routing at the k groups of nFM1’s: A packet p at the input links of the
crossbar switch that has to be buffered in the queue (i.e., it is not routed to the departure link
according to (R1) or the loss link according to (R2)) and has τ̃p(t) ∈ Ψi is routed to the ith group
of nFM1’s. Furthermore, packets routed to a group of nFM1’s are distributed to the nFM1’s in
that group in a round-robin fashion so that load balancing among the nFM1’s in that group can
be achieved and hence the buffering capacity of the nFM1’s can be fully utilized. Specifically, the
round-robin routing is described as follows. Consider the ith group, where 1 ≤ i ≤ k. For ease of
presentation, we call arrival link ` of the j th nFM1 in the ith group the ((`−1)m+ j−1)th input
link of the ith group for j = 1, 2, . . . ,m and ` = 1, 2, . . . , n. As such, the inputs of the ith group
are numbered from 0 to mn − 1 (see Figure 4 for an illustration). Let ui(0) = 0. At slot t, if
there are ri(t) packets routed to the ith group, then they are routed to the (ui(t−1) mod mn)th,
((ui(t− 1) + 1) mod mn)th, . . ., ((ui(t− 1) + ri(t)− 1) mod mn)th input links of the ith group
in the order of increasing buffering tags, and we update ui(t) as ui(t) = (ui(t − 1) + ri(t))

mod mn. It is clear that ui(t) is the index of the input link of the ith group that will be firstly
used by the packets routed to the ith group at slot t.

Remark 2 (i) We will show in the proof of Theorem 7 that the following four conditions are
satisfied at all slots t ≥ 1 under the priority-based routing policy (R1)–(R3): (C1) Highest-
priority packet availability condition: If there is a departure request and there are packets in the
queue at slot t, then the packet with the highest priority in the queue at slot t is from the arrival
link or the m output links of the first group of nFM1’s. (C2) Lowest-priority packet availability
condition: If there is a buffer overflow at slot t, then the packet with the lowest priority in the
queue at slot t is from the arrival link or the m output links of the last group of nFM1’s. (C3)
Collision-free condition: There is at most one packet routed to any input link of any nFM1 at
slot t. (C4) No buffer overflow condition: There is no buffer overflow at any nFM1 at slot t.

(ii) If the condition (C1) (resp., (C2)) is satisfied at slot t, then we see from the routing policy
(R1) (resp., (R2)) that the properties (P2) and (P4) (resp., (P3) and (P5)) are satisfied at slot t.
If the conditions (C3) and (C4) are satisfied at slot t, then there is no packet loss at any nFM1
so that there is no internal packet loss in the feedback system in Figure 3(a) at slot t, and hence
the property (P1) is satisfied at slot t. Therefore, if the conditions (C1)–(C4) are satisfied at slot
t, then the feedback system in Figure 3(a) can be operated as a priority queue with buffer size
Uk at slot t.
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D. Basic Properties on Buffering Tags

In this subsection, we derive some basic properties on buffering tags that will be used in the
proof of our constructions of optical priority queues in Section III.

We first derive two basic properties on the change of buffering tags in a slot under our priority-
based routing policy. The first property says that the buffering tag of a packet can only increase
(resp., decrease) by at most one in a slot under our priority-based routing policy, which is a
direct result of (3) and the fact that there is at most one arrival (resp., departure) packet with
priority higher than that packet in a slot.

Theorem 3 Assume that the feedback system in Figure 3(a) is operated under the routing policy
(R1)–(R3) at all slots, the property (P1) is satisfied up to slot t− 1, and the priorities (P4) and
(P5) are satisfied up to slot t. Suppose that a packet p is buffered in the feedback system at slot
t− 1 and has to be buffered in the feedback system at slot t. Then we have

−1 ≤ τ̃p(t)− τ̃p(t− 1) ≤ 1. (5)

The second property says that the difference between the buffering tag of a lower-priority
packet and the buffering tag of a higher-priority packet cannot decrease and can only increase
by at most one in a slot under our priority-based routing policy, which is a direct consequence of
(3) and the fact that there is at most one arrival packet with priority lower than the higher-priority
packet but higher than the lower-priority packet in a slot.

Theorem 4 Assume that the feedback system in Figure 3(a) is operated under the routing policy
(R1)–(R3) at all slots, the property (P1) is satisfied up to slot t− 1, and the priorities (P4) and
(P5) are satisfied up to slot t. Suppose that two packets, say packet p1 and packet p2, are buffered
in the feedback system at slot t − 1 and have to be buffered in the feedback system at slot t,
where packet p1 has higher priority than packet p2, i.e., τ̃p1(t− 1) < τ̃p2(t− 1). Then we have

0 ≤ [τ̃p2(t)− τ̃p1(t)]− [τ̃p2(t− 1)− τ̃p1(t− 1)] ≤ 1. (6)

In the following, we derive two basic properties on the buffering tags of packets buffered in or
routed to each group of nFM1’s under our priority-based routing policy. We first use Theorem 3
to derive the range of the buffering tags of packets buffered in each group of nFM1’s under our
priority-based routing policy.

Theorem 5 Assume that the feedback system in Figure 3(a) is operated under the routing policy
(R1)–(R3) at all slots, the property (P1) is satisfied up to slot t− 1, and the priorities (P4) and
(P5) are satisfied up to slot t. Suppose that a packet p is buffered in the ith group of nFM1’s at
slot t for some 1 ≤ i ≤ k. Then we have

Li −Bi + 1 ≤ τ̃p(t) ≤ Ui +Bi − 1. (7)

Proof. Let t′ be the slot that packet p is routed to the ith group of nFM1’s for the last time
before or at slot t, say packet p is routed to the j th nFM1 in the ith group at slot t′ for some
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1 ≤ j ≤ m. Since packet p is buffered in the ith group of nFM1’s at slot t, it is clear from the
definition of t′ that packet p is admitted into the j th nFM1 in the ith group at slot t′ and buffered
there at slots t′, t′ + 1, . . . , t. As we also know from Remark 1(i) that after packet p is admitted
into the the j th nFM1 in the ith group at slot t′, it can be buffered there for at most Bi slots, we
easily deduce that

t ≤ t′ +Bi − 1. (8)

Now write τ̃p(t) as

τ̃p(t) = τ̃p(t
′) +

t−t′∑
`=1

(τ̃p(t
′ + `)− τ̃p(t′ + `− 1)). (9)

It then follows from (9), τ̃p(t′) ∈ Ψi = {Li, Li + 1, . . . , Ui} (according to the routing policy
(R3)), Theorem 3, and t − t′ ≤ Bi − 1 in (8) that τ̃p(t) ≤ Ui + (t − t′) · 1 ≤ Ui + Bi − 1 and
τ̃p(t) ≥ Li − (t− t′) · 1 ≥ Li −Bi + 1.

Now we use Theorem 3 and Theorem 4 to derive an upper bound on the difference between
the buffering tags of two packets that are buffered in or routed to each group of nFM1’s, which
in turn gives an upper bound on the number of packets buffered in or routed to each group of
nFM1’s under our priority-based routing policy.

Theorem 6 Assume that the feedback system in Figure 3(a) is operated under the routing policy
(R1)–(R3) at all slots, the property (P1) is satisfied up to slot t− 1, and the priorities (P4) and
(P5) are satisfied up to slot t. Suppose that two packets, say packet p1 and packet p2, are buffered
in or routed to the ith group of nFM1’s at slot t for some 1 ≤ i ≤ k. Then we have

|τ̃p1(t)− τ̃p2(t)| ≤ |Ψi|+Bi − 2. (10)

Therefore, there are at most |Ψi|+Bi−1 packets buffered in or routed to the ith group of nFM1’s
at slot t.

Proof. Let t1 (resp., t2) be the slot that packet p1 (resp., packet p2) is routed to the ith group
of nFM1’s for the last time before or at slot t. Then we have τ̃p1(t1), τ̃p2(t2) ∈ Ψi = {Li, Li +

1, . . . , Ui} (according to the routing policy (R3)), and it follows that

|τ̃p1(t1)− τ̃p2(t2)| ≤ Ui − Li = |Ψi| − 1. (11)

Assume without loss of generality that t1 ≤ t2. Since t1 ≤ t, we consider the two cases t1 = t

and t1 < t separately.
Case 1: t1 = t. In this case, we see from t = t1 ≤ t2 ≤ t that t2 = t. Thus, we have from

(11) and Bi ≥ 1 that

|τ̃p1(t)− τ̃p2(t)| = |τ̃p1(t1)− τ̃p2(t2)| ≤ |Ψi| − 1 ≤ |Ψi|+Bi − 2.
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Case 2: t1 < t. In this case, packet p1 is not routed to the ith group of nFM1’s at slot t
(according to the definition of t1) and hence it must be buffered in the ith group of nFM1’s at
slot t. It then follows from the argument leading to (8) that t ≤ t1 +Bi− 1. Therefore, we have

|τ̃p1(t)− τ̃p2(t)|

=

∣∣∣∣τ̃p1(t2)− τ̃p2(t2) +

t−t2∑
`=1

[
(τ̃p1(t2 + `)− τ̃p2(t2 + `))− (τ̃p1(t2 + `− 1)− τ̃p2(t2 + `− 1))

]∣∣∣∣
≤ |τ̃p1(t2)− τ̃p2(t2)|+ (t− t2) · 1

=

∣∣∣∣τ̃p1(t1)− τ̃p2(t2) +

t2−t1∑
`=1

(τ̃p1(t1 + `)− τ̃p1(t1 + `− 1))

∣∣∣∣+ t− t2

≤ |Ψi| − 1 + (t2 − t1) · 1 + t− t2
≤ |Ψi|+Bi − 2,

where the first inequality follows from Theorem 4, the second inequality follows from (11) and
Theorem 3, and the third inequality follows from t ≤ t1 +Bi − 1.

III. CONSTRUCTIONS OF OPTICAL PRIORITY QUEUES

In this section, we will use the basic properties on buffering tags obtained in Section II-D to
show that the feedback system in Figure 3(a) can be operated as an optical priority queue
with buffer size Uk under the routing policy (R1)–(R3) if 1 ≤ s ≤ k − 1, m ≥ 1, and
n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the following conditions (A1)–(A3):

(A1) n ≥ min{2s+ 1, k}+ 1.
(A2) B1 = Bk = 1, Bi ≥ 1 for i = 2, 3, . . . , k − 1,

Bi ≤

{
Ui−1, if 2 ≤ i ≤ s+ 1,

Ui−1 − Ui−s−1, if s+ 2 ≤ i ≤ k,

and

Bi ≤

{
Ui+s − Ui, if 1 ≤ i ≤ k − s− 1,

Uk − Ui, if k − s ≤ i ≤ k − 1.

(Recall from Section II-C that Ui =
∑i

j=1 |Ψj| for i = 1, 2, . . . , k.)
(A3) 1 ≤ |Ψi| ≤ (m− 1)Bi + 1 for i = 1, 2, . . . , k.

Theorem 7 Assume that the feedback system in Figure 3(a) is operated under the routing policy
(R1)–(R3) at all slots. Suppose that 1 ≤ s ≤ k − 1, m ≥ 1, and n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|,
. . . , |Ψk| satisfy the conditions (A1)–(A3). Then the feedback system in Figure 3(a) can be
operated as an optical priority queue with buffer size Uk at all slots t ≥ 1.

Remark 8 It is easy to check that when s = 1, k = 2` − 1 for some ` ≥ 2, and m = 3, the
choice n = 4, B1 = B2`−1 = 1, Bi = B2`−i = 2i−2 for 2 ≤ i ≤ `, and |Ψi| = |Ψ2`−i| = 2i−1 for
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1 ≤ i ≤ ` given in [19] satisfies the conditions (A1)–(A3). Therefore, the construction in [19]
indeed is a special case of our constructions in Theorem 7 as mentioned in Section I.

Before we present the proof of Theorem 7, we give the intuitive idea behind our constructions.
Since the design of the delays of the fiber delay lines in the SDL constructions of the nFM1’s
adopted in this paper (see Section IV) is determined by the buffer sizes B1, B2, . . . , Bk of
the nFM1’s, and the design of the routing policy performed by the optical crossbar switches is
determined by the sets Ψ1,Ψ2, . . . ,Ψk of buffering tags under our priority-based routing policy, it
is clear that the design of the buffer sizes B1, B2, . . . , Bk and the design of the sets Ψ1,Ψ2, . . . ,Ψk

of buffering tags are closely related and highly coupled as mentioned in Section I.
The idea behind the conditions (A1)–(A3) in our constructions can be roughly described as

follows (the details are given in the proof of Theorem 7):
(i) The condition (A2) says that Bi ≤

∑i−1
j=1 |Ψj| for 2 ≤ i ≤ s + 1, Bi ≤

∑i−1
j=i−s |Ψj|

for s + 2 ≤ i ≤ k, Bi ≤
∑i+s

j=i+1 |Ψj| for 1 ≤ i ≤ k − s − 1, and Bi ≤
∑k

j=i+1 |Ψj| for
k − s ≤ i ≤ k − 1, namely, Bi is no greater than the sum of the |Ψj|’s of at most s of its
neighboring groups. Note that a packet p may be buffered in an nFM1 in the ith group for
up to Bi slots (by Remark 1(i)), and its tag can change as time evolves. If Bi is too large,
i.e., greater than such a sum, then packet p may still be buffered in the ith group when its
tag decreases to 1 (resp., increases to Uk + 1) and there is a departure request (resp., there is
a buffer overflow). Therefore, packet p cannot be routed to the departure (resp. loss) link so
that we cannot successfully construct an optical priority queue in such a case. In the proof of
Theorem 7, we show that such a situation cannot happen and the conditions (C1) and (C2) can
be satisfied if the condition (A2) is satisfied.

(ii) Since a packet p may be buffered in an nFM1 in the ith group for up to Bi slots, its buffering
tag can change by at most Bi when it leaves from the ith group of nFM1’s (by Theorem 3).
As we know from the condition (A2) that Bi is no greater than the sum of the |Ψj|’s of at
most s of its neighboring groups, the buffering tag of packet p can only belong to Ψj for
max{i− s, 1} ≤ j ≤ min{i + s, k} when packet p leaves from the ith group of nFM1’s. Thus,
when packet p leaves from the ith group of nFM1’s, it can only be routed to the ith group itself
or at most 2s of its neighboring groups. As a result, the packets routed to a group of nFM1’s
can only come from the arrival link, or the output links of that group itself or at most 2s of its
neighboring groups, and this limits the number of packets that can be routed to that group. The
condition (A1) then guarantees that n is large enough so that there are enough input links in
any group of nFM1’s to accommodate the packets routed to that group. Thus, the collision-free
condition (C3) can be satisfied if the conditions (A1) and (A2) are satisfied.

(iii) Finally, the condition (A3) says that |Ψi| is at most (m− 1)Bi + 1. If |Ψi| is greater than
(m− 1)Bi + 1, then we see from Theorem 6 that there can be more than mBi packets buffered
in or routed to the ith group of nFM1’s. Therefore, there are more than Bi packets buffered in
or routed to some nFM1 in the ith group, so that there is a buffer overflow at that nFM1. In the
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proof of Theorem 7, we show that the no buffer overflow condition (C4) can be satisfied if the
condition (A3) is satisfied.
Proof. (Proof of Theorem 7) We will prove this theorem by induction on slot t. Recall that
we have assumed that the feedback system in Figure 3(a) is initially empty at slot t = 0 and
hence we have q(0) = 0. First consider slot t = 1. As q(0) = 0, it is clear that there are a(1)

packets in the queue at slot t = 1 and they are the arrival packets from the arrival link. Thus, the
conditions (C1) and (C2) are trivially satisfied at slot t = 1. As a(1) ≤ 1, it is clear that there
is at most one packet routed to any nFM1 at slot t = 1. Thus, the conditions (C3) and (C4) are
also satisfied at slot t = 1. Therefore, it follows from Remark 2(ii) that the feedback system in
Figure 3(a) can be operated as an optical priority queue with buffer size Uk at slot t = 1.

Now assume as the induction hypothesis that the feedback system in Figure 3(a) can be
operated as an optical priority queue with buffer size Uk up to slot t − 1, i.e., the properties
(P1)–(P5) (with B = Uk) are satisfied up to slot t−1, for some t−1 ≥ 1. Therefore, if a packet
p is buffered in the queue at slot t− 1, then we have from (2) and (1) that

τp(t) = τp(t− 1)− d(t− 1) + ap(t) = τ̃p(t− 1) + ap(t), (12)

where ap(t) is the number of arrival packets at slot t with priorities higher than packet p.
In the following, we will show that the conditions (C1)–(C4) are satisfied at slot t. It then

follows from Remark 2(ii) that the feedback system in Figure 3(a) can be operated as an optical
priority queue with buffer size Uk at slot t, and the induction is completed.

(i) The highest-priority packet availability condition (C1) is satisfied at slot t. Suppose that
there is a departure request from the controller and there are packets in the queue at slot t, i.e.,
c(t) = 1 and q(t− 1) + a(t) > 0. We will use Theorem 5 and (A2) to show that the packet with
the highest priority in the queue at slot t is from the arrival link or the m output links of the
first group of nFM1’s so that the condition (C1) is satisfied at slot t.

Let packet p be the packet with the highest priority in the queue at slot t, i.e., τp(t) = 1. If
packet p is an arrival packet at slot t, then we are done. So assume that packet p is not an arrival
packet at slot t. Then packet p must be stored in the buffer of the queue at slot t− 1. Let ap(t)
be the number of arrival packets at slot t with priorities higher than packet p. Then it is clear
from τ̃p(t− 1) ≥ 1 and τ̃p(t− 1) ≤ τp(t) = 1 (by using ap(t) ≥ 0 in (12)) that

τ̃p(t− 1) = 1. (13)

From B1 = 1 in (A2), L1 = 1, and U1 ≥ L1, we have

L1 −B1 + 1 = L1 = 1 and U1 +B1 − 1 = U1 ≥ L1 = 1. (14)

From Li = Ui−1 + 1, (A2), the monotonicity of the Ui’s in (4), and U0 = 0, we also have

Li −Bi + 1 = (Ui−1 + 1)−Bi + 1 ≥

{
2, if 2 ≤ i ≤ s+ 1,

Ui−s−1 + 2 > U0 + 2 = 2, if s+ 2 ≤ i ≤ k.
(15)
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Therefore, we see from Theorem 5 (for slot t−1) and (13)–(15) that packet p must be buffered
in the first group of nFM1’s at slot t − 1. As B1 = 1, it follows from Remark 1(i) that packet
p is buffered there for exactly one slot and then leaves from the first group of nFM1’s at slot t.

(ii) The lowest-priority packet availability condition (C2) is satisfied at slot t. Suppose that
there is a buffer overflow at slot t, i.e., c(t) = 0, q(t − 1) = Uk, and a(t) = 1. We will use
Theorem 5 and (A2) to show that the packet with the lowest priority in the queue at slot t is
from the arrival link or the m output links of the last group of nFM1’s so that the condition
(C2) is satisfied at slot t.

Let packet p be the packet with the lowest priority in the queue at slot t, i.e., τp(t) = Uk + 1.
If packet p is an arrival packet at slot t, then we are done. So assume that packet p is not an
arrival packet at slot t. Then packet p must be stored in the buffer of the queue at slot t − 1.
Let ap(t) be the number of arrival packets at slot t with priorities higher than packet p. Then it
is clear from τ̃p(t− 1) ≤ Uk (from the induction hypothesis we know that there are at most Uk
packets buffered in the queue at slot t− 1) and τ̃p(t− 1) ≥ τp(t)− 1 = Uk (by using ap(t) ≤ 1

in (12)) that

τ̃p(t− 1) = Uk. (16)

From Bk = 1 in (A2) and Lk ≤ Uk, we have

Lk −Bk + 1 = Lk ≤ Uk and Uk +Bk − 1 = Uk. (17)

From (A2) and the monotonicity of the Ui’s in (4), we also have

Ui +Bi − 1 ≤

{
Ui+s − 1 < Uk − 1, if 1 ≤ i ≤ k − s− 1,

Uk − 1, if k − s ≤ i ≤ k − 1.
(18)

Therefore, we see from Theorem 5 (for slot t − 1) and (16)–(18) that packet p must be
buffered in the last group, i.e., the kth group, of nFM1’s at slot t − 1. As Bk = 1, it follows
from Remark 1(i) that packet p is buffered there for exactly one slot and then leaves from the
last group of nFM1’s at slot t.

(iii) The collision-free condition (C3) is satisfied at slot t. Since we have already shown
in (i) and (ii) above that the conditions (C1) and (C2) are satisfied at slot t, we see from
Remark 2(ii) that the properties (P4) and (P5) are satisfied at slot t. Thus, we now know from
the induction hypothesis that the property (P1) is satisfied up to slot t − 1, and the priorities
(P4) and (P5) are satisfied up to slot t. We will then use Theorem 3, Theorem 5, and (A2) to
show that there are at most m ·min{2s + 1, k} + 1 packets routed to any group of nFM1’s at
slot t. Note that there are mn input links at any group of nFM1’s and we have from (A1) that
mn ≥ m(min{2s+1, k}+1) ≥ m ·min{2s+1, k}+1. As such, it follows from the round-robin
routing policy (R3) that there is at most one packet routed to any input link of any nFM1 at
slot t. Therefore, the condition (C3) is satisfied at slot t.

It remains to show that there are at most m ·min{2s+ 1, k}+ 1 packets routed to any group
of nFM1’s at slot t. Consider a packet, say packet p, that is buffered in the ith group of nFM1’s
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at slot t− 1, leaves from the ith group of nFM1’s at slot t, and has to be stored in the buffer of
the queue at slot t, where 1 ≤ i ≤ k. If s+ 2 ≤ i ≤ k, then we have

τ̃p(t)− Li−s ≥ (τ̃p(t− 1)− 1)− Li−s ≥ (Li −Bi)− Li−s
= (Ui−1 + 1−Bi)− (Ui−s−1 + 1) ≥ 0, (19)

where the first inequality follows from Theorem 3, the second inequality follows from Theorem 5,
and the third inequality follows from (A2). Similarly, if 1 ≤ i ≤ k − s − 1, then we also have
from Theorem 3, Theorem 5, and (A2) that

τ̃p(t)− Ui+s ≤ (τ̃p(t− 1) + 1)− Ui+s ≤ (Ui +Bi)− Ui+s ≤ 0. (20)

Thus, we see from (19) and (20) that τ̃p(t) ∈ Ψj for some max{i− s, 1} ≤ j ≤ min{i+ s, k}.
It then follows from the routing policy (R3) that packet p can only be routed to the j th group
for some max{i− s, 1} ≤ j ≤ min{i+ s, k}.

As a result, we can see that the packets routed to the ith group of nFM1’s at slot t can only
come from the arrival link or the output links of the j th group for some max{i − s, 1} ≤ j ≤
min{i+ s, k}. In other words, the packets routed to any group of nFM1’s can only come from
the arrival link or the output links of at most min{2s + 1, k} of groups. As each group has m
nFM1’s, we conclude that there are at most m ·min{2s+ 1, k}+ 1 packets routed to any group
of nFM1’s at slot t.

(iv) The no buffer overflow condition (C4) is satisfied at slot t. We will use Theorem 6 and
(A3) to show that there is no buffer overflow at any nFM1 at slot t. Therefore, the condition
(C4) is satisfied at slot t.

Consider the ith group of nFM1’s, where 1 ≤ i ≤ k. Let q′i,j(t
′) (resp., a′i,j(t

′)) be the number
of packets buffered in (resp., the number of packets routed to) the j th nFM1 in the ith group at slot
t′ for j = 1, 2, . . . ,m and t′ = 1, 2, . . .. Consider the j th nFM1 in the ith group, where 1 ≤ j ≤ m.
As we know from Remark 1(ii) that there is always a packet buffered in the fiber with delay one
in Figure 3(b) (with B = Bi) whenever there are packets buffered in the j th nFM1, it follows that
among the q′i,j(t− 1) packets buffered in the j th nFM1 at slot t− 1, there are min{q′i,j(t− 1), 1}
of them departing from the j th nFM1 at slot t and the rest of the (q′i,j(t − 1) − 1)+ packets
remain buffered there at slot t, where x+ = max{x, 0}. Thus, the number of packets buffered
in or routed to the j th nFM1 at slot t is given by (q′i,j(t− 1)− 1)+ + a′i,j(t). Therefore, we have
from Theorem 6 and (A3) that

m∑
j=1

((q′i,j(t− 1)− 1)+ + a′i,j(t)) ≤ |Ψi|+Bi − 1 ≤ mBi. (21)

Since the m nFM1’s in the ith group are evenly loaded (according to the round-robin routing
policy (R3)) and evenly served (according to Remark 1(ii)), and there is no buffer overflow at
any nFM1 up to slot t−1 (according to the induction hypothesis), it is a direct result of the join-
the-shortest-queue and serve-the-longest-queue policy in queueing theory that the virtual queue
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lengths (q′i,j(t− 1)− 1)+ +a′i,j(t), j = 1, 2, . . . ,m, of the m nFM1’s in the ith group differ by at
most one (this fact can also be easily proved by induction on slot t as in the proof of Lemma 11
in [19]). As such, we deduce from (21) that (q′i,j(t− 1)− 1)+ + a′i,j(t) ≤ d(mBi)/me = Bi for
j = 1, 2, . . . ,m. In other words, there are at most Bi packets buffered in or routed to the j th

nFM1 at slot t for j = 1, 2, . . . ,m. Therefore, there is no buffer overflow at the j th nFM1 in the
ith group at slot t for all j = 1, 2, . . . ,m.

IV. COMPLEXITY ANALYSIS FOR CONSTRUCTIONS WITH MAXIMUM BUFFER SIZES
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Fig. 5. A construction of a self-routing optical n-to-1 FIFO multiplexer with buffer size n`−1 by using an optical ((n−1)`+
n)× ((n− 1)`+ n) (bufferless) crossbar switch and (n− 1)` fiber delay lines.

In our constructions of optical priority queues in Figure 3(a), we have used optical nFM1’s.
Recall that an optical nFM1 with buffer size B is a concatenation of an optical nFM with buffer
size B− 1 and a fiber delay line with delay equal to one as shown in Figure 3(b). It was shown
in [4, Figure 3] and [19, Lemma 2] that a self-routing optical nFM with buffer size n`−1 can be
constructed by using a feedback system consisting of an optical ((n− 1)`+n)× ((n− 1)`+n)

(bufferless) crossbar switch and (n − 1)` fiber delay lines (see Figure 5). As such, an optical
nFM with buffer size B − 1 can be constructed by using the feedback system in Figure 5 with
` = dlognBe. It then follows that an optical nFM1 with buffer size B can be constructed by
using an optical ((n − 1)dlognBe + n + 1) × ((n − 1)dlognBe + n + 1) (bufferless) crossbar
switch and (n− 1)dlognBe+ 1 fiber delay lines.

Suppose 1 ≤ s ≤ k − 1 and m ≥ 1. We see from Theorem 7 and the argument in the
above paragraph that if n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the conditions (A1)–(A3),
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then an optical priority queue with buffer size Uk =
∑k

i=1 |Ψi| can be constructed by using
an optical (M + 2) × (M + 2) (bufferless) crossbar switch and M fiber delay lines, where
M = m

∑k
i=1((n − 1)dlognBie + n + 1). Apparently, the construction complexity of such a

construction is increasing with n (as the switch size M + 2 is increasing with n). To achieve
minimum construction complexity, we have to choose n as small as possible, and it is clear from
(A1) that we should choose n = min{2s+ 1, k}+ 1.

Furthermore, when the achieved buffer size is used as the performance measure of a construc-
tion, we have to choose |Ψi| as large as possible for i = 1, 2, . . . , k to maximize the achieved
buffer size Uk =

∑k
i=1 |Ψi| in our construction. From (A3), it is clear that we should choose

|Ψi| = (m − 1)Bi + 1 for i = 1, 2, . . . , k. If m = 1, then |Ψi| = 1 for i = 1, 2, . . . , k, and
hence we have Uk = k. In this case, we should choose Bi = 1 for i = 1, 2, . . . , k (as there is
at most |Ψi| = 1 packet routed to the ith group of nFM1’s at any slot according to the routing
policy (R3)), and hence we have M = k(n + 1). Clearly this is not an interesting case as
Uk = M/(n + 1) grows only linearly with M . So we assume that m ≥ 2 in the rest of this
paper.

For m ≥ 2, the choice |Ψi| = (m − 1)Bi + 1 can be made as large as possible by choosing
Bi as large as possible for i = 1, 2, . . . , k. From (A2), we can see that we should make the
following choice:

(A2∗) If s+ 1 ≤ k ≤ 2s+ 2, then

Bi = Bk−i+1 =

{
1, if i = 1,∑i−1

j=1((m− 1)Bj + 1), if 2 ≤ i ≤ dk/2e.

On the other hand, if k ≥ 2s+ 3, then

Bi = Bk−i+1 =


1, if i = 1,∑i−1

j=1((m− 1)Bj + 1), if 2 ≤ i ≤ s+ 1,∑i−1
j=i−s((m− 1)Bj + 1), if s+ 2 ≤ i ≤ dk/2e.

We summarize the above findings in the following theorem.

Theorem 9 Suppose 1 ≤ s ≤ k− 1 and m ≥ 2. Then an optical priority queue with buffer size
Uk can be constructed by using a feedback system consisting of an optical (M + 2)× (M + 2)

(bufferless) crossbar switch and M fiber delay lines, where

Uk =
k∑
i=1

((m− 1)Bi + 1), (22)

M = m
k∑
i=1

((n− 1)dlognBie+ n+ 1), (23)

in which n = min{2s+ 1, k}+ 1 and B1, B2, . . . , Bk are given by (A2∗).
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To express the buffer size Uk (given by (22)) in terms of M (given by (23)), we need the
following results on the buffer sizes B1, B2, . . . , Bk given by (A2∗).

Theorem 10 Suppose that 1 ≤ s ≤ k − 1, m ≥ 2, and B1, B2, . . . , Bk are given by (A2∗).
(i) If s = 1, then we have

Bi = Bk−i+1 =
i−1∑
j=0

(m− 1)j =

{
i, if m = 2 and 1 ≤ i ≤ dk/2e,
(m−1)i−1
m−2 , if m ≥ 3 and 1 ≤ i ≤ dk/2e.

(24)

(ii) If s ≥ 2 and s+ 1 ≤ k ≤ 2s+ 2, then we have

Bi = Bk−i+1 =

{
1, if i = 1,

mi−1 + mi−2−1
m−1 , if 2 ≤ i ≤ dk/2e.

(25)

(iii) If s ≥ 2 and k ≥ 2s+ 3, then we have

Bi = Bk−i+1 =
s∑
j=1

αjλ
i
j −

s

s(m− 1)− 1
for 2 ≤ i ≤ dk/2e, (26)

where λ1, λ2, . . . , λs are the roots of the characteristic polynomial p(z) = zs −
∑s−1

j=0(m −
1)zj associated with the sth-order nonhomogeneous linear difference equation with constant
coefficients given by Bi =

∑i−1
j=i−s((m − 1)Bj + 1) for s + 2 ≤ i ≤ dk/2e, and α1, α2, . . . , αs

can be obtained by solving the s equations Bi = mi−1 + mi−2−1
m−1 , i = 2, 3, . . . , s+ 1.

We need the following two lemmas (whose proofs are given in Appendix A and Appendix B,
respectively) for the proof of Theorem 10.

Lemma 11 Suppose that m ≥ 2 and assume that x1 = 1 and xi =
∑i−1

j=1((m − 1)xj + 1) for
i ≥ 2.

(i) xi = mxi−1 + 1 for i ≥ 3.
(ii) xi = mi−1 + mi−2−1

m−1 for i ≥ 2.

Lemma 12 Suppose that s ≥ 2 and m ≥ 2, and suppose that p(z) is a polynomial in the
indeterminate z given by p(z) = zs −

∑s−1
j=0(m− 1)zj .

(i) p(z) has s complex roots and they are all distinct.
(ii) If s is odd, then p(z) has one positive root and s− 1 nonreal roots. On the other hand,

if s is even, then p(z) has one positive root, one negative root, and s− 2 nonreal roots.
(iii) The positive root, say λ+, of p(z) lies in the open interval (m− 1/(m− 1)s−1,m− (m−

1)/ms), and λ+ ≈ m for sufficiently large s or m. The roots of p(z) other than λ+ lie in the
annulus {z ∈ C : λ+/(λ+ + 1) ≤ |z| ≤ λ+ −m + 1}. Therefore, λ+ is the root of p(z) of the
largest magnitude.

Proof. (Proof of Theorem 10) As we have from (A2∗) that Bi = Bk−i+1 for 1 ≤ i ≤ dk/2e, it
suffices to prove the theorem for Bi for 1 ≤ i ≤ dk/2e.
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(i) Suppose s = 1. Then we have k ≥ s + 1 = 2. First consider the case that k = 2. In this
case, we have from (A2∗) that B1 = B2 = 1 and hence (24) holds.

Now consider the case that k ≥ 3. We will prove by induction on i that Bi =
∑i−1

j=0(m− 1)j

for 1 ≤ i ≤ dk/2e. It is clear from (A2∗) that B1 = 1. Assume as the induction hypothesis that
Bi−1 =

∑i−2
j=0(m − 1)j for some 1 ≤ i − 1 ≤ dk/2e − 1. Then we have from (A2∗) (note that

s = 1 in this case) and the induction hypothesis that

Bi = (m− 1)Bi−1 + 1 = (m− 1)
i−2∑
j=0

(m− 1)j + 1 =
i−1∑
j=0

(m− 1)j.

(ii) Suppose s ≥ 2 and s + 1 ≤ k ≤ 2s + 2. Then we have from (A2∗) that B1 = 1 and
Bi =

∑i−1
j=1((m − 1)Bj + 1) for 2 ≤ i ≤ dk/2e, and hence (25) follows immediately from

Lemma 11(ii).
(iii) Suppose s ≥ 2 and k ≥ 2s + 3. Then we have from (A2∗) that B1 = 1 and Bi =∑i−1
j=1((m − 1)Bj + 1) for 2 ≤ i ≤ s + 1, and hence it follows from Lemma 11(ii) that Bi =

mi−1 + mi−2−1
m−1 for 2 ≤ i ≤ s+ 1.

From (A2∗), we also have the sth-order nonhomogeneous linear difference equation with con-
stant coefficients given by Bi =

∑i−1
j=i−s((m−1)Bj+1) for s+2 ≤ i ≤ dk/2e. The characteristic

polynomial p(z) associated with this difference equation is given by p(z) = zs−
∑s−1

j=0(m−1)zj .
As we know from Lemma 12(i) that p(z) has s roots, say λ1, λ2, . . . , λs, and they are all
distinct, it then follows from well-established results in the theory of difference equations [28,
Chapter 2] that Bi =

∑s
j=1 αjλ

i
j + α0 for 2 ≤ i ≤ dk/2e, where α0 = − s

s(m−1)−1 is a particular
solution to this difference equation, and α1, α2, . . . αs can be obtained by solving the s equations
Bi = mi−1 + mi−2−1

m−1 , i = 2, 3, . . . , s+ 1.
In the following theorem (whose proof is given in Appendix C), we use the results in

Theorem 10 to express the buffer size Uk (given by (22)) in terms of M (given by (23)).

Theorem 13 Suppose that 1 ≤ s ≤ k− 1, m ≥ 2, Uk is given by (22), and M is given by (23).
(i) If k = 2, then we have Uk = M/4.
(ii) If s = 1, k ≥ 3, and m = 2, then we have M/7 ≤ Uk ≤ (M/13)2.
(iii) If s = 1, k ≥ 3, and m ≥ 3, then we have

2
√

2M log2 (m−1)/(3m)−6 log2 (m−1) ≤ Uk ≤ 2
√

2M log2 (m−1)/(3m)+log2(8(m−1)). (27)

Therefore, we have Uk = 2O(
√

2M log2 (m−1)/(3m)) in this case.
(iv) If s ≥ 2, s+ 1 ≤ k ≤ 2s, and m ≥ 2, then we have

2
√
M log2(k+1) log2m/(km)−4 log2(k+1) ≤ Uk ≤ 2

√
M log2(k+1) log2m/(km)+log2(3m). (28)

Therefore, we have Uk = 2O(
√
M log2(k+1) log2m/(km)) in this case.
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(v) If s ≥ 2, k ≥ 2s+1, m ≥ 2, and if we approximate Bi and Bk−i+1 by Bi = Bk−i+1 ≈ α+m
i

for 1 ≤ i ≤ dk/2e, where α+ is the coefficient of the term λi+ in (26) with λ+ being the positive
root of the characteristic polynomial p(z) in Theorem 10(iii), then we have

Uk ≈ 2
√
M log2 (2s+2) log2m/((2s+1)m)+log2(α+m). (29)

Therefore, we have Uk ≈ 2O(
√
M log2 (2s+2) log2m/((2s+1)m)) in this case.

Remark 14 (i) The reason for the approximation Bi = Bk−i+1 ≈ α+m
i for 1 ≤ i ≤ dk/2e

in Theorem 13(v) is as follows. In this case, the roots λ1, λ2, . . . , λs of the polynomial p(z)

and the coefficients α1, α2, . . . , αs in the expression for B1, B2, . . . , Bk in (26) cannot be easily
expressed in terms of s, k, and m. However, for this case we know from Lemma 12(iii) that
λ+ > m − 1/(m − 1)s−1 ≥ 1 and any root λ of p(z) other than λ+ has magnitude |λ| ≤
λ+ −m + 1 < 1− (m− 1)/ms < 1. Thus, for sufficiently large s and m, we can approximate
Bi and Bk−i+1 by only keeping the term α+λ

i
+ in (26). For sufficiently large s and m, we

also know from Lemma 12(iii) that λ+ ≈ m and hence we can approximate Bi and Bk−i+1 by
Bi = Bk−i+1 ≈ α+m

i.
(ii) From Theorem 13, we see that we can achieve a buffer size Uk that goes beyond polynomial

in M when s = 1, k ≥ 3, and m ≥ 3, or when s ≥ 2, k ≥ 3, and m ≥ 2. In these cases, we
can achieve a buffer size of Uk = 2O(

√
αM), where α is a constant that depends on s, k, and m.

(iii) For s = 1 and k ≥ 3, we see from Theorem 13 (iii) that among the integers m ≥ 3, it is
better to choose m = 5 (as (1/m) log2 (m− 1) achieves its maximum when m = 5), and hence
we can achieve a buffer size of Uk = 2O(

√
4M/15).

(iv) From Theorem 13(iv), we see that among the integers m ≥ 2, it is better to choose
m = 3 (as (1/m) log2m achieves its maximum when m = 3), and hence we can achieve a
buffer size of Uk = 2O(

√
(log2 3)(log2(k+1))M/(3k)). If we need to achieve a larger buffer size, then

we need to choose a larger k. For k ≥ 6, the result Uk = 2O(
√

(log2 3)(log2(k+1))M/(3k)) is worse
than Uk = 2O(

√
4M/15) in Remark 14(iii). A similar remark can be made by using the result in

Theorem 13(v).

V. ROUTER BUFFER SIZING, NUMERICAL RESULTS, AND FEASIBILITY ISSUES

A. Router Buffer Sizing

The buffer sizes in today’s commercial backbone routers are in the order of millions of packets.
This follows from the well-known rule of thumb (or the bandwidth-delay product (BDP) rule)
B = C×RTT , where B is the buffer size of the router, C is the data rate of the bottleneck link,
and RTT is the average round-trip time of flows passing through the bottleneck link. This rule
was proposed by Villamizar and Song in 1994 [29] in order to guarantee 100% link utilization.

When the bottleneck link carries a large number, say N , of desynchronized long-lived TCP
flows, researchers from Stanford University appealed to statistical multiplexing and claimed
in 2004 [30] that the buffer size follows the small-buffer rule (or the Stanford model) B =
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C × RTT/
√
N , and the buffer size can be dramatically reduced to hundreds or thousands of

packets while achieving near 100% link utilization at the same time. When the traffic comes from
slower access networks, or when the source paces the packets it sends, it was claimed in [31]
that the buffer size can be further reduced to tens of packets, but at the expense of sacrificing
about 15% of link capacity. This is known as the tiny-buffer rule in the literature. However, it
was mentioned in [32] that the small-buffer or tiny-buffer rule may not hold when there is a
small number of flows, or when there is a very skewed mix of short-lived and long-lived flows.
Whether the small/tiny-buffer rules hold for most parts of today’s backbone networks remains
an open issue worthy of further investigation [32]. We note that similar findings from different
perspectives are presented in [33] and [34]. We refer to [35] for a comprehensive review of the
buffer sizing problem.

As mentioned in Section I, one of the primary technological bottlenecks in all-optical packet
switching is the difficulty in building large optical buffers. Since optical buffers are very costly
but optical link capacity is abundant in today’s optical technology, all-optical packet switching
currently is most feasible in the tiny-buffer regime by trading off capacity for tiny buffers.
However, with the advances in optical technology, it is possible to build all-optical packet-
switched networks for all regimes of buffer sizes in a cost-effective manner in the future.

B. Numerical Results
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Fig. 6. The value of M required to achieve a targeted buffer size B for s = 1 and 3 ≤ m ≤ 8. (a) 24 ≤ B ≤ 220. (b)
250 ≤ B ≤ 2500.

We have shown in Remark 14(ii) that by using a feedback system consisting of an optical
(M +2)× (M +2) (bufferless) crossbar switch and M fiber delay lines, we can achieve a buffer
size Uk of 2O(

√
αM) when s = 1, k ≥ 3, and m ≥ 3, or when s ≥ 2, k ≥ 3, and m ≥ 2, where

Uk is given by (22), M is given by (23), and α is a constant that depends on s, k, and m. It is
known [36] that an N ×N switch can be built by using N log2N −N/2 2× 2 switches via the
Benes network. Thus, the construction complexity in our constructions is increasing with M .
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For a targeted buffer size B and for given values of s and m, we first use (22) to choose
the smallest k such that Uk ≥ B in order to achieve minimum construction complexity (as M
is increasing with k), and then use (23) to calculate the value of M required to achieve the
targeted buffer size B. In Figure 6, we show the results for s = 1 and 3 ≤ m ≤ 8. It is clear
from Figure 6 that M is roughly proportional to (log2B)2, which conforms with the result that
B ≈ Uk = 2O(

√
αM) in Remark 14(ii). For 24 ≤ B ≤ 220, we see from Figure 6(a) that the

best choice of m is m = 4 as it achieves minimum construction complexity. As B gets larger,
say 250 ≤ B ≤ 2500, we see from Figure 6(b) that the best choice of m is m = 5 as expected
from our theoretical analysis in Remark 14(iii). We note that similar results hold for s ≥ 2. In
particular, for s = 2 and s = 3, we find that the best choice of m is m = 5 for 24 ≤ B ≤ 220.
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Fig. 7. (a) The value of M required to achieve a targeted buffer size B for s = 1 and m = 4, for s = 2 and m = 5, for
s = 3 and m = 5, and for the construction in [19]. (b) The ratio between the numbers of 2× 2 switches required to achieve a
targeted buffer size B for the constructions in [19] and for our constructions with s = 1 and m = 4.

The construction in [19] is a special case of our constructions with s = 1, k = 2` − 1 for
some ` ≥ 2, m = 3, n = 4, B1 = B2`−1 = 1, Bi = B2`−i = 2i−2 for 2 ≤ i ≤ `, and
|Ψi| = |Ψ2`−i| = 2i−1 for 1 ≤ i ≤ `. From Uk =

∑k
i=1 |Ψi| and (23), we obtain

Uk = 3 · 2`−1 − 2 and M = (9`2 + 33`− 12)/2. (30)

In Figure 7(a), we show the value of M required to achieve the targeted buffer size B for
s = 1 and m = 4, for s = 2 and m = 5, for s = 3 and m = 5, and for the construction
in [19] by using (30). From Figure 7(a), we see that the construction complexity is increasing
with s, and hence we should choose s = 1 so as to achieve minimum construction complexity.
Furthermore, our constructions with s = 1 and m = 4 has lower construction complex than that
of the construction in [19] for 24 ≤ B ≤ 220.

Note that we have mentioned above that an (M + 2)× (M + 2) switch can be built by using
(M + 2) log2 (M + 2) − (M + 2)/2 2 × 2 switches. Let Ñ and Ñ∗ be the numbers of 2 × 2

switches required to achieve a targeted buffer size B for the construction in [19] and for our
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constructions with s = 1 and m = 4, respectively. We see from Figure 7(b) that Ñ/Ñ∗ is
between 1.2 and 2.08 for 24 ≤ B ≤ 220. This means that the cost of the construction in [19] is
1.2 to 2.08 times of that of our constructions with s = 1 and m = 4. Indeed, the actual saving
by using our constructions could be significant as an optical 2× 2 switch is still quite expensive
currently. This can be seen from Table I that the extra number Ñ − Ñ∗ of 2×2 switches needed
is quite large and ranges from 457 to 4634 for 24 ≤ B ≤ 220. Even in the tiny/small buffer
regime, say, 24 ≤ B ≤ 213, the extra number of 2 × 2 switches is still quite large and ranges
from 457 to 1983.

Furthermore, we also see from Table I that the number of 2 × 2 switches needed for our
constructions with s = 1 and m = 4 goes from 423 for B = 24 in the tiny-buffer regime to
1867 for B = 27 in the small-buffer regime, and to 8147 for B = 214 beyond the small-buffer
regime. This means that the cost for larger buffers in the small-buffer regime (resp., beyond the
small-buffer regime) is about 5 times (resp., 20 times) higher than that in the tiny-buffer regime.

B 24 25 26 27 28 29 210 211 212

Ñ 880 1352 1929 2615 3412 4323 5350 6496 7762

Ñ∗ 423 661 1010 1867 2374 3010 3664 4452 6204

Ñ − Ñ∗ 457 691 919 748 1038 1313 1686 2044 1558

Ñ/Ñ∗ 2.0804 2.0454 1.9099 1.4006 1.4372 1.4362 1.4602 1.4591 1.2511

B 213 214 215 216 217 218 219 220

Ñ 9151 10664 12303 14069 15964 17990 20148 22438

Ñ∗ 7168 8147 10277 11430 12730 14046 15514 18636

Ñ − Ñ∗ 1983 2517 2026 2639 3234 3944 4634 3802

Ñ/Ñ∗ 1.2766 1.3089 1.1971 1.2309 1.2540 1.2808 1.2987 1.2040

TABLE I
THE NUMBERS OF 2× 2 SWITCHES REQUIRED TO ACHIEVE A TARGETED BUFFER SIZE B FOR THE CONSTRUCTION IN [19]

AND FOR OUR CONSTRUCTIONS WITH s = 1 AND m = 4.

C. Feasibility Issues

In [31], an optical buffer was demonstrated by using semiconductor optical amplifier (SOA)
gate matrix 2 × 2 switches and waveguide delay lines. The SOA gate matrix switches exhibit
high extinction ratios (>40 dB), low crosstalk (<-40 dB), and fast switching times (1-ns rise
time 20%–80%), which results in longer storage times, lower crosstalk interference, and higher
throughput. The waveguide delay lines have low loss (on the order of 0.01 dB/cm) and can be
integrated into a small size. Such an implementation of optical buffers has been demonstrated
to be a viable approach for high-speed buffering of hundreds of packets.

In reality, crosstalk due to power leakage from other optical links, power loss experienced
during recirculations through the optical switches and the fiber delay lines, amplified spontaneous
emission (ASE) from the Erbium-doped fiber amplifiers (EDFA) that are used for boosting the
signal power, and the pattern effect of the optical switches, among others, lead to a limitation on
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the number of times that an optical packet can recirculate through the optical switches and the
fiber delay lines. This is because an optical packet recirculating more than a limited number of
times cannot be reliably recognized at the destined output port due to severe power loss and/or
serious noise accumulation even if it appears at the right place and at the right time.

With the technological advances in 3R (reamplification, retiming, and reshaping) regeneration,
hundreds of packet recirculations is possible [31]. Thus, the issue of limited number of packet
recirculations may somewhat be alleviated. In the scenario that the numbers of recirculations
of most packets are below certain threshold beyond which the received packets cannot be
recognized, the issue of limited number of packet recirculations may not be a serious problem.
For example, in [37] we have considered the SDL constructions of optical priority queues in [15]
under i.i.d. Bernoulli arrival traffic, i.i.d. Bernoulli control input, and uniform priority assignment.
When the arrival rate, say 0.9, is less than the departure request rate, say 0.95, our analytical
results and simulation results show that the average number of packet recirculations is less than
two and the probability that a packet recirculating more than 15 times is less than 10−4 (see [37,
Figure 3]). This shows that the limited number of packet recirculations may not be a serious
issue in this case.

Ideally, it would be much better to have a systematic approach that is technology-independent
to build optical buffers with a limited number of packet recirculations. Results along this line on
the constructions of optical 2FM’s with a limited number of packet recirculations can be found
in [8] and [9].

Another important practical issue of concern is fault-tolerant capability. In the design of a net-
work element, survivability deals with the situation that some of the components of the network
element may not function properly. Without taking the survivability aspect into consideration
during the design process, a network element consisting of hundreds or thousands of components
may be in a total breakdown even when only a single component fails to function properly. As
before, it would be nice to have a technology-independent approach to build optical buffers
with fault-tolerant capability. Results along this line on the constructions of fault-tolerant optical
2FM’s and fault-tolerant optical linear compressors/decompressors can be found in [7] and [38].

VI. CONCLUSION

In this paper, we have shown that the feedback system in Figure 3(a) can be operated as an
optical priority queue under a simple priority-based routing policy. The idea is to first route
the packet with the highest (resp., lowest) priority to the departure (resp., loss) link whenever
necessary, and then route the other packets at the input links of the crossbar switch to the optical
nFM1’s according to their buffering tags. We have also shown that by using a feedback system
consisting of an optical (M + 2)× (M + 2) (bufferless) crossbar switch and M fiber delay lines,
we can achieve a buffer size of 2O(

√
αM), where α is a constant that depends on s, k, and m.

Furthermore, we showed that the best buffer size that we can achieve is 2O(
√

4M/15). Our result
(exponential in

√
M ) substantially improves on the best known result (polynomial in M ) in the
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literature. From our numerical results, we showed that the best choice of s is s = 1, and it
is best to choose s = 1 and m = 4 in the tiny/small-buffer regime. We also showed that the
construction complexity of our constructions is lower than that of the construction in [19], and
the actual saving, in terms of the number of 2× 2 switches needed, by our constructions could
be quite significant even in the tiny-buffer and small-buffer regimes. Finally, we note that there
is still a gap between the buffer sizes of our constructions and the theoretical upper bound 2M .
Whether this theoretical upper bound can be achieved or not and, in the case that it can be
achieved, how to achieve it remains a very challenging open problem.

APPENDIX A
PROOF OF LEMMA 11

(i) Suppose that i ≥ 3. Then we have

xi =
i−1∑
j=1

((m− 1)xj + 1) =
i−2∑
j=1

((m− 1)xj + 1) + (m− 1)xi−1 + 1

= xi−1 + (m− 1)xi−1 + 1 = mxi−1 + 1.

(ii) We prove (ii) by induction on i. Clearly, we have x2 = (m−1)x1+1 = (m−1)·1+1 = m.
Assume as the induction hypothesis that xi−1 = mi−2 + mi−3−1

m−1 for some i − 1 ≥ 2. Then we
have from (i) (note that i ≥ 3) and the induction hypothesis that

xi = mxi−1 + 1 = m

(
mi−2 +

mi−3 − 1

m− 1

)
+ 1 = mi−1 +

mi−2 − 1

m− 1
.

APPENDIX B
PROOF OF LEMMA 12

(i) Since p(z) is clearly a polynomial of degree s, it follows from the fundamental theorem
of algebra [20, Theorem 16.22] that p(z) has s complex roots.

Now we show that the roots of p(z) are distinct by contradiction. Assume on the contrary
that p(z) has a repeated root, say λ. Let f(z) be a polynomial given by f(z) = (z − 1)p(z).
Then we have

f(z) = (z − 1)p(z) = (z − 1)

(
zs −

s−1∑
j=0

(m− 1)zj

)
= zs+1 −mzs +m− 1. (31)

As it is clear that λ is also a repeated root of f(z), we must have f ′(λ) = 0. Thus, we see from
(31) that (s + 1)λs −m · sλs−1 = 0, and it follows from s ≥ 2 that either λ = 0 or λ = m·s

s+1
.

Since 0 cannot be a root of p(z) (as p(0) = −(m− 1) 6= 0), we must have

λ =
m · s
s+ 1

. (32)
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From λ = m·s
s+1
6= 1 (as (m− 1)s 6= 1), we see that

p(λ) = λs −
s−1∑
j=0

(m− 1)λj = λs − (m− 1)(λs − 1)

λ− 1

= λs − (m− 1)(s+ 1)(λs − 1)

(m− 1)s− 1
=

(m− 1)(s+ 1)−mλs

(m− 1)s− 1
,

and it then follows from p(λ) = 0 that

λs =
(m− 1)(s+ 1)

m
. (33)

If m = 2, then we see from λ = m·s
s+1

= 2s
s+1

in (32) and s ≥ 2 that

λs − (m− 1)(s+ 1)

m
=

(
2s

s+ 1

)s
− s+ 1

2
=

(
1 +

s− 1

s+ 1

)s
− s+ 1

2

≥ 1 +

(
s

1

)
s− 1

s+ 1
− s+ 1

2
=

(s− 1)2

2(s+ 1)
> 0,

and we have reached a contradiction to (33) in this case. On the other hand, if m ≥ 3, then we
see from λ = m·s

s+1
in (32) and s ≥ 2 that

λs =

(
m · s
s+ 1

)s
≥
(

3 · 2
2 + 1

)s
= 2s > s+ 1 >

(m− 1)(s+ 1)

m
,

and we have also reached a contradiction to (33) in this case.
(ii) To prove (ii), we need Descartes’ rule of signs [21]–[24], which says that the number z+(f)

of positive roots (counting multiplicities) of a nonzero polynomial f(z) with real coefficients
is at most equal to the number v(f) of changes of signs in the sequence of the polynomial’s
coefficients (omitting the zero coefficients), and that the difference between these two numbers
is even, i.e.,

v(f)− z+(f) is a nonnegative even integer. (34)

It is easy to see from (34) and z+(f) ≥ 0 that

if v(f) ≤ 1, then z+(f) = v(f). (35)

Note that as it is clear that v(p) = 1, we have from (35) that z+(p) = v(p) = 1, i.e., p(z) has
exactly one positive root. Also note that 0 cannot be a root of p(z) (as p(0) = −(m− 1) 6= 0).

Let f(z) = (z − 1)p(z) and let g(z) = f(−z) = −(z + 1)p(−z). Then it is easy to see that
a positive number λ is a root of g(z) if and only if −λ is a root of p(z). We first consider the
case that s is odd. In this case , we see from (31) that g(z) = zs+1 + mzs + m − 1. As it is
clear that v(g) = 0 in this case, we have from (35) that z+(g) = v(g) = 0, i.e., g(z) has no
positive roots, or, equivalently, p(z) has no negative roots. Therefore, we conclude from (i) and
the results above that p(z) has one positive root and s− 1 nonreal roots in this case.
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Now we consider the case that s is even. In this case, we see from (31) that g(z) = −zs+1−
mzs+m−1. As it is clear that v(g) = 1 in this case, we have from (35) that z+(g) = v(g) = 1,
i.e., g(z) has exactly one positive root, or, equivalently, p(z) has exactly one negative root.
Therefore, we conclude from (i) and the results above that p(z) has one positive root, one
negative root, and s− 2 nonreal roots in this case.

(iii) As p(m − 1) = −
∑s−2

j=0(m − 1)j+1 < 0 (note that s ≥ 2) and p(m) = 1 > 0, we
have from the intermediate-value theorem for continuous functions [20, Theorem 4.33] that
m− 1 < λ+ < m. From (31), we see that

λs+1
+ −mλs+ +m− 1 = (λ+ − 1)p(λ+) = (λ+ − 1) · 0 = 0,

and it then follows that

λ+ = m− m− 1

λs+
. (36)

Since s ≥ 2, m ≥ 2, and we have proved that m − 1 < λ+ < m, we deduce from (36) that
m− 1/(m− 1)s−1 < λ+ < m− (m− 1)/ms and hence λ+ ≈ m for sufficiently large s or m.

To show that the roots of p(z) other than λ+ lie in the annulus {z ∈ C : λ+/(λ+ + 1) ≤
|z| ≤ λ+ − m + 1}, we need Eneström-Kakeya theorem [25]–[27, Theorem 4], which says
that if f(z) =

∑`
i=0 biz

i is a polynomial of degree ` with positive coefficients, i.e., bi > 0 for
i = 0, 1, . . . , `, then all the roots of f(z) lie in the annulus {z ∈ C : min1≤i≤`

bi−1

bi
≤ |z| ≤

max1≤i≤`
bi−1

bi
}.

Since λ+ is a root of p(z), we can write p(z) as p(z) = (z − λ+)q(z) for some polynomial
q(z) =

∑s−1
i=0 biz

i. By comparing the coefficients of the term zi in (z − λ+)q(z) and p(z) for
i = 0, 1, . . . , s, it is easy to see that −λ+b0 = −m+1, bi−1−λ+bi = −m+1 for i = 1, 2, . . . , s−1,
and bs−1 = 1. In the following, we prove by induction on i that

bi =
i∑

j=0

m− 1

λj+1
+

for i = 0, 1, . . . , s− 1. (37)

Note that from −λ+b0 = −m+1, we have b0 = (m−1)/λ+. Assume as the induction hypothesis
that bi−1 =

∑i−1
j=0

m−1
λj+1
+

for some 0 ≤ i− 1 ≤ s− 2. Then we have from bi−1 − λ+bi = −m+ 1

and the induction hypothesis that

bi =
1

λ+
(bi−1 +m− 1) =

1

λ+

i−1∑
j=0

m− 1

λj+1
+

+
m− 1

λ+
=

i∑
j=0

m− 1

λj+1
+

.

From bi−1 − λ+bi = −m + 1 for 1 ≤ i ≤ s − 1, 0 < b0 < b1 < · · · < bs−1 (by (37)),
b1 = m−1

λ2+
(λ+ + 1) in (37), and bs−1 = 1, we obtain

min
1≤i≤s−1

bi−1
bi

= min
1≤i≤s−1

(
λ+ −

m− 1

bi

)
= λ+ −

m− 1

b1
=

λ+
λ+ + 1

(38)
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and

max
1≤i≤s−1

bi−1
bi

= max
1≤i≤s−1

(
λ+ −

m− 1

bi

)
= λ+ −

m− 1

bs−1
= λ+ −m+ 1. (39)

Therefore, we have from Eneström-Kakeya theorem, (38), and (39) that all the roots of q(z), i.e.,
all the roots of p(z) other than λ+, lie in the annulus {z ∈ C : λ+/(λ++1) ≤ |z| ≤ λ+−m+1}.

APPENDIX C
PROOF OF THEOREM 13

(i) Suppose that k = 2. Then we have s = 1 (as 1 ≤ s ≤ k−1 = 1) and n = min{2s+1, k}+

1 = k + 1 = 3. We also have from (A2∗) that B1 = B2 = 1. As such, it follows from (22) that
Uk =

∑2
i=1((m−1)·1+1) = 2m and it follows from (23) that M = m

∑2
i=1(2dlog3 1e+4) = 8m.

Thus, we have Uk = M/4.
(ii) Suppose that s = 1, k ≥ 3, and m = 2. Then we have n = min{2s+1, k}+1 = 2s+2 = 4

and we have from (24) that Bi = Bk−i+1 = i for 1 ≤ i ≤ dk/2e. If k = 3, then we have B1 = 1,
B2 = 2, and B3 = 1, and it follows from (22) that Uk = 2 + 3 + 2 = 7 and from (23) that
M = 2(5 + 8 + 5) = 36. Thus, we have M/7 ≤ Uk ≤ (M/13)2 in this case. So we assume that
k ≥ 4 in the rest of the proof. We consider the following two cases.

Case 1: k is odd, say k = 2`− 1 for some ` ≥ 3. It follows from (22) that

Uk = 2
`−1∑
i=1

(i+ 1) + (`+ 1) = `2 + 2`− 1, (40)

and it follows from (23) that

M = 2

[
2
`−1∑
i=1

(3dlog4 ie+ 5) + (3dlog4 `e+ 5)

]

= 12

[
`′∑
j=1

j(4j − 4j−1) + (`′ + 1)(`− 1− 4`
′
)

]
+ 6dlog4 `e+ 10(2`− 1)

= 4(3`′ + 8)`− 12`′ − 4`
′+2 + 6dlog4 `e − 18, (41)

where `′ is the unique nonnegative integer such that 4`
′

+ 1 ≤ ` − 1 ≤ 4`
′+1. From (41),

0 ≤ `′ ≤ log4(`− 2) ≤ (`− 3)/2 (note that ` ≥ 3), and (40), we have

M ≤ 4(3`′ + 8)`− 4(`− 1) + 6(`′ + 2)− 18 ≤ 6(`− 3)`+ 28`+ 3(`− 3)− 2

= 6`2 + 13`− 11 ≤ 7Uk, (42)

M ≥ 4(3`′ + 8)`− 12`′ − 16(`− 2) + 6(`′ + 1)− 18 ≥ 16`+ 20 ≥ 13
√
Uk. (43)

Thus, we see from (42) and (43) that M/7 ≤ Uk ≤ (M/13)2.
Case 2: k is even, say k = 2` for some ` ≥ 2. It follows from (22) that

Uk = 2
∑̀
i=1

(i+ 1) = `2 + 3`, (44)
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and it follows from (23) that

M = 2 · 2
∑̀
i=1

(3dlog4 ie+ 5) = 12

[
`′∑
j=1

j(4j − 4j−1) + (`′ + 1)(`− 4`
′
)

]
+ 20`

= 4(3`′ + 8)`− 4`
′+2 + 4, (45)

where `′ is the unique nonnegative integer such that 4`
′
+ 1 ≤ ` ≤ 4`

′+1. From (45), 0 ≤ `′ ≤
log4(`− 1) ≤ (`− 2)/2, and (44), we have

M ≤ 4(3`′ + 8)`− 4`+ 4 ≤ 6(`− 2)`+ 28`+ 4 = 6`2 + 16`+ 4 ≤ 7Uk, (46)

M ≥ 4(3`′ + 8)`− 16(`− 1) + 4 ≥ 16`+ 20 ≥ 13
√
Uk. (47)

Thus, we see from (46) and (47) that M/7 ≤ Uk ≤ (M/13)2.
(iii) Suppose that s = 1, k ≥ 3, and m ≥ 3. Then we have n = min{2s+1, k}+1 = 2s+2 = 4

and we have from (24) that Bi = Bk−i+1 = ((m − 1)i − 1)/(m − 2) for 1 ≤ i ≤ dk/2e. We
consider the following two cases.

Case 1: k is odd, say k = 2`− 1 for some ` ≥ 2. It follows from (22) that

Uk = 2
`−1∑
i=1

[(m− 1)((m− 1)i − 1)/(m− 2) + 1] + (m− 1)((m− 1)` − 1)/(m− 2) + 1

= [m(m− 1)`+1 − 2(m− 1)2 − (2`− 1)(m− 2)]/(m− 2)2. (48)

From (48), ` ≥ 2, and m ≥ 3, we see that

Uk ≥ [m(m− 1)`+1 − 2(m− 1)` − (2`− 1)(m− 2)]/(m− 2)2

= (m− 1)` + (3(m− 1)` − 2`+ 1)/(m− 2) ≥ (m− 1)` (49)

Uk ≤ m(m− 1)`+1/(m− 2)2 ≤ 8(m− 1)`. (50)

For 1 ≤ i ≤ `, it is easy to see that (m − 1)i−1 ≤ Bi ≤ (m − 1)i, and hence we have
dlog4Bie < log4Bi + 1 ≤ i · log4 (m− 1) + 1 and dlog4Bie ≥ log4Bi ≥ (i − 1) log4 (m− 1).
As such, it follows from (23) that

M

m
≤ 2

`−1∑
i=1

[3(i · log4 (m− 1) + 1) + 5] + 3(` · log4 (m− 1) + 1) + 5

= 3`2 log4 (m− 1) + 8(2`− 1) ≤ 3(`+ 6)2 log4 (m− 1), (51)

M

m
≥ 2

`−1∑
i=1

[3(i− 1) log4 (m− 1) + 5] + 3(`− 1) log4 (m− 1) + 5

≥ 3(`− 1)2 log4 (m− 1) + 5(2`− 1) ≥ 3(`− 1)2 log4 (m− 1). (52)

Thus, (27) follows from (49), ` ≥
√

2M/(3m log2 (m− 1))− 6 in (51), (50),
and ` ≤

√
2M/(3m log2 (m− 1)) + 1 in (52).
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Case 2: k is even, say k = 2` for some ` ≥ 2. It follows from (22) that

Uk = 2
∑̀
i=1

[(m− 1)((m− 1)i − 1)/(m− 2) + 1]

= [2(m− 1)`+2 − 2(m− 1)2 − 2`(m− 2)]/(m− 2)2. (53)

From (53), ` ≥ 2, and m ≥ 3, we see that

Uk ≥ [2(m− 1)`+2 − 2(m− 1)` − 2`(m− 2)]/(m− 2)2

= 2(m− 1)` + (4(m− 1)` − 2`)/(m− 2) ≥ (m− 1)`, (54)

Uk ≤ 2(m− 1)`+2/(m− 2)2 ≤ 8(m− 1)`. (55)

As in Case 1 above, it follows from (23) that

M

m
≤ 2

∑̀
i=1

[3(i · log4 (m− 1) + 1) + 5] = 3`(`+ 1) log4 (m− 1) + 16`

≤ 3(`+ 6)2 log4 (m− 1), (56)

M

m
≥ 2

∑̀
i=1

[3(i− 1) log4 (m− 1) + 5] = 3`(`− 1) log4 (m− 1) + 10`

≥ 3(`− 1)2 log4 (m− 1). (57)

Thus, (27) also follows from (54)–(57) as in Case 1 above.
(iv) Suppose that s ≥ 2, s+1 ≤ k ≤ 2s, and m ≥ 2. Then we have n = min{2s+1, k}+1 =

k+ 1 and we have from (25) that B1 = Bk = 1 and Bi = Bk−i+1 = mi−1 + (mi−2− 1)/(m− 1)

for 2 ≤ i ≤ dk/2e. We consider the following two cases.
Case 1: k is odd, say k = 2`− 1 for some ds/2e+ 1 ≤ ` ≤ s. It follows from (22) that

Uk = 2m+ 2
`−1∑
i=2

[(m− 1)(mi−1 + (mi−2 − 1)/(m− 1)) + 1]

+(m− 1)(m`−1 + (m`−2 − 1)/(m− 1)) + 1

= m` + ((m2 + 1)m`−2 − 2)/(m− 1). (58)

From (58), ` ≥ ds/2e+ 1 ≥ 2, and m ≥ 2, we see that

m` ≤ Uk ≤ 3m`. (59)
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For 1 ≤ i ≤ `, it is easy to see that mi−1 ≤ Bi ≤ (k + 1)mi−1, and hence we have
dlogk+1Bie < logk+1Bi + 1 ≤ (i − 1) logk+1m + 2 and dlogk+1Bie ≥ logk+1Bi ≥ (i −
1) logk+1m. As such, it follows from (23) that

M

m
≤ 2

`−1∑
i=1

[k((i− 1) logk+1m+ 2) + k + 2] + k((`− 1) logk+1m+ 2) + k + 2

= k(`− 1)2 logk+1m+ (3k + 2)(2`− 1) ≤ k(`+ 4/ logk+1m)2 logk+1m

= k(`+ 4 log2 (k + 1)/ log2m)2 log2m/ log2 (k + 1), (60)

M

m
≥ 2

`−1∑
i=1

[k(i− 1) logk+1m+ k + 2] + k(`− 1) logk+1m+ k + 2

= k(`− 1)2 logk+1m+ (k + 2)(2`− 1) ≥ k(`− 1)2 log2m/ log2 (k + 1). (61)

Thus, (28) follows from (59), ` ≥
√
M log2(k + 1)/(km log2m)−4 log2(k+1)/ log2m in (60),

and ` ≤
√
M log2(k + 1)/(km log2m) + 1 in (61).

Case 2: k is even, say k = 2` for some d(s+ 1)/2e ≤ ` ≤ s. It follows from (22) that

Uk = 2m+ 2
∑̀
i=2

[(m− 1)(mi−1 + (mi−2 − 1)/(m− 1)) + 1]

= 2m` + 2(m`−1 − 1)/(m− 1). (62)

From (62), ` ≥ d(s+ 1)/2e ≥ 2, and m ≥ 2, we see that

m` ≤ Uk ≤ 3m`. (63)

As in Case 1 above, it follows from (23) that

M

m
≤ 2

∑̀
i=1

[k((i− 1) logk+1m+ 2) + k + 2]

= k`(`− 1) logk+1m+ (3k + 2) · 2` ≤ k(`+ 4/ logk+1m)2 logk+1m

= k(`+ 4 log2 (k + 1)/ log2m)2 log2m/ log2 (k + 1), (64)

M

m
≥ 2

∑̀
i=1

[k(i− 1) logk+1m+ k + 2] = k`(`− 1) logk+1m+ (k + 2) · 2`

≥ k(`− 1)2 log2m/ log2 (k + 1). (65)

Thus, (28) also follows from (63)–(65) as in Case 1 above.
(v) Suppose that s ≥ 2, k ≥ 2s+1, and m ≥ 2. Then we have n = min{2s+1, k}+1 = 2s+2.

Assume that Bi = Bk−i+1 ≈ α+m
i for 1 ≤ i ≤ dk/2e. We consider the following two cases.
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Case 1: k is odd, say k = 2`− 1 for some ` ≥ s+ 1. It follows from (22) that

Uk ≈ 2
`−1∑
i=1

[(m− 1)α+m
i + 1] + (m− 1)α+m

` + 1

= 2α+(m` −m) + α+(m− 1)m` + 2`− 1

≈ α+m
`+1, (66)

and it follows from (23) that

M

m
≈ 2

`−1∑
i=1

[(2s+ 1) log2s+2(α+m
i) + 2s+ 3] + (2s+ 1) log2s+2(α+m

`) + 2s+ 3

= (2s+ 1)`2 log2s+2m+ ((2s+ 1) log2s+2 α+ + 2s+ 3)(2`− 1)

≈ (2s+ 1)`2 log2m/ log2(2s+ 2). (67)

Thus, (29) follows from (66) and ` ≈
√
M log2(2s+ 2)/((2s+ 1)m log2m) in (67).

Case 2: k is even, say k = 2` for some ` ≥ s+ 1. It follows from (22) that

Uk = 2
∑̀
i=1

[(m− 1)α+m
i + 1] = 2α+(m`+1 −m) + 2` ≈ α+m

`+1, (68)

and it follows from (23) that

M

m
≈ 2

∑̀
i=1

[(2s+ 1) log2s+2(α+m
i) + 2s+ 3]

= (2s+ 1)`(`+ 1) log2s+2m+ 2`((2s+ 1) log2s+2 α+ + 2s+ 3)

≈ (2s+ 1)`2 log2m/ log2(2s+ 2). (69)

Thus, (29) follows from (68) and (69) as in Case 1 above.
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