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Abstract—Nowadays, most video-enabled mobile terminals have 
been equipped with modern video codecs. Video communications, 
especially for encoding H.264 format bit-stream, however, are 
usually very power-consuming, leading to rather limited 
communication period for mobile devices powered by batteries. 
Computation-aware video coding can effectively extend the battery 
life. In this paper, we propose a computation-aware intra mode 
decision for H.264 coding and transcoding applications. The 
proposed algorithm optimizes the visual quality by adaptively 
adjusting the number of prediction modes in mode decision under a 
given computation constraint. We introduce a new concept of 
computation buffer and formulate the computation control of mode 
decision as a rate-distortion optimization problem of computation  
buffer control. Experimental results show that our proposed 
algorithm can effectively control the computational complexity 
while maintaining good RD-performance and satisfying the given 
computation constraint. 

I. INTRODUCTION 
The explosive growth of compressed video streams and 

repositories which are accessible worldwide and the recent 
addition of new video-related standards, such as H.264/AVC [1] 
and MPEG-21, have stimulated research for new technologies and 
applications in the area of multimedia architectures, processing, 
and networking. Users may employ heterogeneous video-enabled 
terminals such as computers, TVs, mobile phones and personal 
digital assistants with a wide range of computational and display 
capabilities, energy resources, features, accessibilities, and user 
preferences. In recently years, mobile devices have been widely 
deployed. These mobile devices usually have rather limited 
battery power lifetime. Nowadays, most video-enabled mobile 
terminals have been equipped with modern video codecs. Video 
communications, especially for encoding H.264 format bit-stream, 
however, are usually very power-consuming, leading to rather 
limited communication period for mobile devices powered by 
batteries. How to use the limited power more efficiently for 
optimal video encoding thus becomes an important issue. 

The issues about power consumption reduction and effective 
power allocation for handheld devices have been addressed in the 
literature. In [2] and [3], Kannangara et al. proposed a variable 
complexity algorithm for H.264, and adapted for a per-frame 
computational control algorithm. This computational control 
algorithm is based on minimizing the Lagrange Rate-Distortion-
Complexity cost of the encoder. In [4], Wang et al. proposed a 
complexity adaptive motion estimation and mode decision 
(CAMED) method for an H.264 encoder. By giving the bit rate 

and computational constraints, CAMED explores the trade-off 
between video quality and computation resource consumption to 
determine the optimal motion vectors and block modes used in the 
motion-compensation process in the decoder. 

Computation-aware video coding can effectively extend the 
battery life of mobile devices. In this paper, we propose a 
computation-aware intra mode decision for H.264 coding and 
transcoding applications. The proposed algorithm optimizes the 
visual quality by adaptively adjusting the number of prediction 
modes in mode decision under a given computation constraint. 
We introduce a new concept of computation buffer and formulate 
the computation control of mode decision as a rate-distortion 
optimization problem of computation  buffer control.  

II. PROPOSED COMPUTATION CONTROL 
ALGORITHM 

In H.264, if all frames are intra-coded, the main complexity 
bottleneck is the number of Intra_4×4 candidate modes for RDO 
computation. Our algorithm is aimed at dynamically controlling 
the encoding complexity subject to a given computing power 
constraint (i.e., the remaining battery power budget) while 
maintaining the video quality. We define the computation 
constraint as the number of prediction modes to be used per 4×4 
intra block. For example, a “44%” computation constraint means 
that, on average four out of nine prediction modes will be chosen 
per 4×4 intra block in RDO computation of mode decision. With 
the proposed algorithm, an encoder can adaptively determine the 
number of candidate modes for each 4×4 intra block according to 
the block’s characteristics under the given computation constraint. 
The proposed algorithm is divided into four steps as elaborated 
below.  
A.  Computation Buffer Initialization 

Before encoding a video sequence, a computation buffer is set 
up based on a given computing power constraint. The 
computation buffer records and updates the available computing 
power budget up to the current block. Two control parameters are 
used: 

1) C: the number of remaining non-encoded 4×4 intra blocks 
of the video sequence. 

2) Buffer: the number of avalible candidate modes that can be 
chosen for RDO computation. 



For instance, given “70%” computing power constraint for a 
QCIF format sequence with 50 I-frames, two control parameters 
are determined as below: 
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B. Modeling 
The proposed computation model is used to determine how 

many candidate modes can be used for predicting each 4×4 intra-
block based on the features of the block. In our model, an intra-
block is characterized based on the following three observations. 

1) Observation 1: the rank of best mode’s prediction error. 
RDO computation, rather than the prediction error of 

prediction modes, has been used for determining the best intra-
mode in the H.264 reference software for sake of accuracy. The 
RDO computation, however, consumes heavy computing 
power. To show the relationship between the best mode 
obtained by RDO and the SAD/SATD prediction errors, the 
SAD/SATD prediction errors of nine prediction modes are 
sorted by the error values. Figure 1 illustrates the percentages 
of the rank of the SAD and SATD prediction error (among the 
nine prediction modes) of the best mode obtained by mode 
decision with RDO for four test sequences. The figures show 
that the percentage of the four top-ranking prediction modes 
(i.e., with smallest SAD or SATD values) being chosen as the 
best coding mode after mode decision with RDO is about 90%. 
Such high percentages imply that SAD or SATD prediction 
error can be used to predict the best mode efficiently without 
sacrificing the accuracy significantly. In our method, SATD is 
adopted to calculate the prediction error as it has better 
accuracy than SAD in predicting the best coding mode. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Average percentages of the prediction modes that are ranked 
by their prediction errors being chosen as the best coding mode after 
mode decision with RDO for four test sequences: (a) Foreman, (b) 
Carphone, (c) Akiyo, and (d) Coastguard. 

2) Observation 2: the relationship bewteen the standard 
deviation of SATD and the rank. 

The standard deviation σ of nine prediction modes’ SATD 
values can be obtained from (1): 
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These statistics can be used to characterize the relationship 
between the standard deviation of SATD prediction errors and 
the average rank of best mode’s SATD value. For example, if we 
find that the average rank of the best mode’s SATD is “4” when 
the standard deviation of SATD prediction errors is “50,” the best 
mode can be found from the four top-ranking modes(sorted by 
SATD) with a high probability if the standard deviation of SATD 
prediction errors is “50.” With such models, we are able to use 
the statistics of SATD prediction errors of each block to estimate 
the average rank of best mode’s SATD value without resorting to 
RDO computation, leading to significant computation reduction. 

We use the linear regression to find the mathematical model to 
approximate the relationship curve as follows. 
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where Optimali denotes the optimal number of candidate modes. 
The mode parameter sets (a,b) and (c,d) are determined using the 
least squares method, as shown in (3). Table I lists the derived 



coefficient set (a,b) and (a,b) by using (3) in the Foreman and 
Carphone sequences. 
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TABLE I. The coefficient sets for 2 different test sequences with 
four different quantization parameters. 

Sequence QP a b c d 

Foreman 

28 2.3688 0.9272 3.6651 -0.3942
32 2.3493 0.9411 4.2650 -0.4981
36 2.1755 1.0469 5.0111 -0.6179
40 2.0805 1.0266 5.6999 -0.7094

Carphone 

28 2.1590 0.9037 3.3406 -0.3243
32 2.1271 1.0335 3.7453 -0.3882
36 2.0500 1.0230 4.1852 -0.4503
40 2.0310 1.0434 5.0347 -0.5799

Figure 2 compares the actual data obtained from our 
experiment and the corresponding curve approximated by the 
proposed model in (2). The dark blue lines denote the actual data 
curve, whereas the red lines represent the approximated model 
curve. We define this curve as a “Standard Deviation-to-Rank” 
(SR) curve. The result shows that the proposed model is accurate 
enough. 

 
Figure 2. Comparison between the actual data and the proposed model 
(Foreman, QCIF, 300 I-Frames, QP = 18). 

However, for each frame, the SR data of a video frame can be 
obtained after the frame has been encoded. This is only feasible 
for non-realtime coding and transcoding applications. In real-time 
applications, only the data of previous encoded frames are 
available, whereas the SR data of the current frame is unknown 
before performing RDO. However, we will show that the SR 
model of current frame can be estimated using the data of 
previous coded frames with fairly good accuracy according to the 
following observation. 

3) Observation 3: Temporal similarity of SR models. 
Suppose the SR data of the jth frame is denoted as SRj. 

And the linear regression is defined as Linest(). The model 

coefficients of the jth frame is thus Linest(SRj). The cumulative 
SR data of previous t frames, SRj,t, is defined in (4). 
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Moreover, the curve coefficients of pervious t frames is 
denoted as Linest(SRj,t). The sum of coefficient difference, 

tCD , is defined as follows. 
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where N is the total number of frames. As a special case, the 
SR data from all frames is defined as SRAll  by using (6). 
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The model parameter set of all frames is denoted as  
Linest(SRAll). Then the sum of coefficient difference, CDAll, is 
defined in (7). 
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By using the features defined in (4), (5), (6), and (7), the 
temporal similarity of SR data between current frame and 
previous frames can be characterized. Table II shows the 
coefficient difference with different values of t. We can 
observe that the coefficient difference is small when t is small 
enough, meaning that there exists temporal similarity between 
the SR models of current frame and previous frames. As a 
result, the SR curve of current frames from can be estimated 
form those of previous frames before encoding current frame 
with high reliability. 

TABLE II. Coefficient Difference for Foreman QCIF  

QP 1CD  5CD  AllCD  
C D C D C D 

20 75.28 14.66 57.80 12.41 127.45 28.73
24 60.53 11.59 49.13 10.62 118.96 27.01
28 63.79 12.24 53.43 11.69 128.79 29.93
32 82.21 15.28 67.41 14.12 140.66 31.88
36 85.42 16.00 62.09 12.47 138.85 29.49
40 86.98 17.84 63.44 13.93 87.27 18.61

C. Computation Allocation 
The objective of computation resource allocation is to 

determine the number of candidate modes for each 4×4 intra 
blocks. The computation budget for the jth frame, Budgetj, is 
defined as follows: 

C
BufferBudget j = . (8)

Before encoding a 4×4 intra block, we define two control 
parameters as below: 

1) Budget: the computation budget for the ith 4×4 intra block. 
2) Extra: After encoding ith 4×4 intra block, this control 

parameter is used to record the surplus computational budget for 
encoding next block. 



 
Figure 4. Flowchart of the Proposed Method. 

 
While initializing Budgetj, a check of standard deviation is 

performed to find out additional computation according to the 
values of Extra. The SR model usually drops sharply at the small 
standard deviation region as shown in Figure 3, that is, the SR 
curve value is smaller than the statistical data at left region of the 
red vertical line. Therefore, if the standard deviation of the ith 
block is smaller than the threshold (THσ) and there are some 
extra computations, the Budgeti can be increased. The value of 
THσ is determined empirically.  

Finally, the initialization of iBudget  is described in (9). 
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Before choosing the candidate modes for each block, as 
mentioned previously, the optimal number of candidate modes 

can be estimated based on the features of each block. Thus, in the 
following, Budgeti or Optimali are chosen as the final number of 
candidate modes based on the relationship between Budgeti or 
Optimali. 

 
Figure 3. Standard Deviation-Rank Curve (Foreman, QCIF, 300 I-
Frames, QP=40) 



There are four cases of the relationship between Budgeti and 
Optimali. The final number of candidate modes for the ith intra 
block is denoted as Finali. In each case, the proposed method 
chooses Budgeti and Optimali to be Finali, and update Extra for 
encoding next intra block. Each case is described below: 

1) ⎣ ⎦ii BudgetOptimal ≤    
If iOptimal  is much smaller than Budgeti, it means 

that the computation budget is enough. To meet the budget 
as close as possible, the following updates vare performed. 
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2) ⎣ ⎦ iii BudgetOptimalBudget ≤<    
If Optimali is slightly smaller than Budgeti, Optimali is 

prefferred to be chosen as Finali because the computation 
constraint can be met and the svaed computation can be 
reserved for encoding the following blocks. As a result, 
the computation buffer control is as follows: 
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3) ⎣ ⎦ 1+≤< iii BudgetOptimalBudget     
If Optimali is slightly larger than Budgeti, it is 

preferred to be Finali because the computation does not 
exceed the budget too much. Therefore, we update Finali 
as in (12) 

⎣ ⎦ii OptimalFinal =  (12)
4) ⎣ ⎦ ii OptimalBudget <+1  

If Optimali is much larger than Budgeti, it means that 
the computation budget is not enough. To meet the budget 
as close as possible, Finali is updated as follows: 

⎡ ⎤ii BudgetFinal =  (13)
Case 4 is the worst case in the proposed method, because the 

available computations are too low to satisfy the optimal number 
of candidate modes. If there are many extra computations when 
case 4 is chosen, then it can change to case 3 to fit the optimal 
value of candidate modes. 
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D. Computational Buffer Update 
After encoding all 4×4 intra blocks in the jth frame, we define 

Sumj which is used to record the total number of candidate modes 
for RDO computation for the jth frame. 
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where M is the total number of 4×4 blocks in the jth frame. 
Subsequently we update the two control parameters Buffer and C 
in the computation buffer as in (16) for encoding the next frame. 
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The flowchart of the proposed computation control algorithm 
is depicted in Figure 4. 

III. EXPERIMENTAL RESULTS 
The proposed computation control algorithm is implemented 

into JVT JM 12.2 reference software, and compared with the 
original H.264 encoder with full search. In our experiments, the 
environment settings are as follow: 

• Intra Period is set to 1. (All frame using intra coding only) 
• Main profile is adopted with RDO and CABAC enabled. 
• Each 300-frame sequence is encoded with four 

quantization parameters: 20, 24, 28, 32, 36, and 40. 
• THσ  = 1 for each test sequences. 

 
(a) 

 
(b) 

Figure 5. Average number of candidate modes using the proposed 
algorithm for QCIF sequences: (a) Foreman, QP=40, (c,d)=(5.45, -0.61); 
(b) Coastguard, QP=20, (c,d)=(3.73, -0.42)) 

Figure 5 shows the average number of candidate modes by 
using our proposed method with various constraints. Under each 
computation constrain, the proposed algorithm always makes a 
decision that fits the trend of SR curve and assigns the 
computation resources properly. Table III lists the average time 
saving with various computation constraints. The time of intra 
4x4 mode decision consumes about 60% of the total encoding 
time according to the experiments, and our algorithm almost fit 
this condition with the optimal coding efficiency. 

Figure 6 to Figure 8 show the RD-performance results. We 
compare the proposed method with three different approaches. 
The blue square lines indicate the RD-performance of the 
original H.264 encoder. The light orange triangles represent the 
method that uses the fixed number of candidate modes in the 
encoding procedure. The fixed numbers of prediction modes are 
determined by the constraints. For example, if the computation 



constraint is 50%, the fixed number of prediction modes is 4.5 on 
average. The red diamond lines show the modified H.264 
encoder that use only the DC mode and disables all other 4x4 
intra mode for intra 4x4 blocks. According to the PSNR 
comparison, we can see that ever though only 20% computation 
constraint is given, compared with the original H.264 encoder, 
the PSNR loss of the proposed method is only smaller than 0.24 
dB in the worst case. This means that our computational control 
algorithm can maintain the acceptable video quality when the 
computational resource is limited. 

Table III. Average Time Saving with various computation 
constrains 

Sequences 80% 60% 40% 20% 
Foreman 12.55% 25.35% 34.94% 48.65% 

Akiyo 11.92% 25.21% 34.02% 47.85% 

Carphone 12.16% 25.61% 34.53% 48.58% 

Coastguard 13.12% 26.85% 35.62% 50.09% 

 
Figure 6. The RD-performance comparison between the original H.264 
encoder with proposed computation control algorithm. (Stefan, QCIF, 
300 I-Frames) 

 
Figure 7. The RD-performance comparison between the original H.264 
encoder with proposed computation control algorithm. (Foreman, QCIF, 
300 I-Frames) 

 
Figure 8. The RD-performance comparison between the original H.264 
encoder with proposed computation control algorithm. (Carphone, QCIF, 
300 I-Frames) 

IV. CONCLUSIONS 
We proposed a computation-aware intra mode decision for 

H.264 coding and transcoding applications. The proposed 
algorithm optimizes the visual quality by adaptively adjusting the 
number of prediction modes in mode decision under a given 
computation constraint. We introduced a new concept of 
computation buffer and formulate the computation control of 
mode decision as a rate-distortion optimization problem of 
computation  buffer control. Experimental results show that our 
proposed algorithm can effectively control the computational 
complexity while maintaining good RD-performance and 
satisfying the given computation constraint.  

 
REFERENCE 

 
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, 
“Overview of the H.264/AVC video coding standard,” IEEE 
Trans. Circuits Sys. Video Technol., vol. 13, no. 7, pp. 560-576, 
July 2003. 
[2] C. S. Kannangara, I. E. G. Richardson, M. Bystrom, J.R. 
Solera, Y. Zhao, A. MacLennan, and R. Cooney, “Low-
complexity Skip Prediction for H.264 Through Lagrangian Cost 
Estimation,” IEEE Trans. Circuits Sys. Video Technol., vol. 16, 
no. 2, pp. 202-208, Feb. 2006. 
[3] C. S. Kannangara and I. E. G. Richardson, “Computational 
control of an H.264 encoder through Lagrangian cost function 
estimation,” in Int. Workshop Very Low Bit-rate Video-coding, 
Sept. 2005. 
[4] Y. Wang and S.-F. Chang, “Complexity adaptive H.264 
encoding for light weight streams,” Proc. IEEE Int. Conf. 
Acoustics, Speech Signal Processing, May 2006. 


